2025年山西省(大同)重點(diǎn)名校初三第二學(xué)期月考數(shù)學(xué)試題試卷含解析_第1頁
2025年山西?。ù笸┲攸c(diǎn)名校初三第二學(xué)期月考數(shù)學(xué)試題試卷含解析_第2頁
2025年山西?。ù笸┲攸c(diǎn)名校初三第二學(xué)期月考數(shù)學(xué)試題試卷含解析_第3頁
2025年山西省(大同)重點(diǎn)名校初三第二學(xué)期月考數(shù)學(xué)試題試卷含解析_第4頁
2025年山西?。ù笸┲攸c(diǎn)名校初三第二學(xué)期月考數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年山西?。ù笸┲攸c(diǎn)名校初三第二學(xué)期月考數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1252.小軍旅行箱的密碼是一個(gè)六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.3.一元二次方程的根是()A. B.C. D.4.在平面直角坐標(biāo)系xOy中,將點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,得到的對應(yīng)點(diǎn)的坐標(biāo)是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)5.如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:256.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點(diǎn).若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π7.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.8.已知關(guān)于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.59.如圖,在⊙O中,直徑AB⊥弦CD,垂足為M,則下列結(jié)論一定正確的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD10.在0.3,﹣3,0,﹣這四個(gè)數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣11.若二次函數(shù)y=-x2+bx+c與x軸有兩個(gè)交點(diǎn)(m,0),(m-6,0),該函數(shù)圖像向下平移n個(gè)單位長度時(shí)與x軸有且只有一個(gè)交點(diǎn),則n的值是()A.3 B.6 C.9 D.3612.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長率.設(shè)該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.某航空公司規(guī)定,乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)滿足如圖所示的函數(shù)圖象,那么每位乘客最多可免費(fèi)攜帶____kg的行李.14.據(jù)媒體報(bào)道,我國研制的“察打一體”無人機(jī)的速度極快,經(jīng)測試最高速度可達(dá)204000米/分,將204000這個(gè)數(shù)用科學(xué)記數(shù)法表示為_____.15.如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個(gè)三角形重疊部分的面積為32時(shí),它移動(dòng)的距離AA′等于________.16.如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結(jié)論有_____.(填序號)17.如圖,AB是⊙O的直徑,AC與⊙O相切于點(diǎn)A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.18.如圖,ABCD是菱形,AC是對角線,點(diǎn)E是AB的中點(diǎn),過點(diǎn)E作對角線AC的垂線,垂足是點(diǎn)M,交AD邊于點(diǎn)F,連結(jié)DM.若∠BAD=120°,AE=2,則DM=__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的“內(nèi)接格點(diǎn)三角形”.設(shè)對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個(gè)交點(diǎn)為A,B,其頂點(diǎn)為C,如果△ABC是該拋物線的內(nèi)接格點(diǎn)三角形,AB=3,且點(diǎn)A,B,C的橫坐標(biāo)xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1620.(6分)拋一枚質(zhì)地均勻六面分別刻有1、2、3、4、5、6點(diǎn)的正方體骰子兩次,若記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則以方程組的解為坐標(biāo)的點(diǎn)在第四象限的概率為_____.21.(6分)已知關(guān)于的一元二次方程.試證明:無論取何值此方程總有兩個(gè)實(shí)數(shù)根;若原方程的兩根,滿足,求的值.22.(8分)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:氣溫x(℃)05101520音速y(m/s)331334337340343(1)求y與x之間的函數(shù)關(guān)系式:(2)氣溫x=23℃時(shí),某人看到煙花燃放5s后才聽到聲響,那么此人與煙花燃放地約相距多遠(yuǎn)?23.(8分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機(jī)準(zhǔn)備生產(chǎn)空氣凈化設(shè)備,該企業(yè)決定從以下兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價(jià)為120元,每年最多可生產(chǎn)125萬件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價(jià)為80元,每件產(chǎn)品銷售價(jià)為180元,每年可生產(chǎn)120萬件,另外,年銷售x萬件乙產(chǎn)品時(shí)需上交0.5x2萬元的特別關(guān)稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤y1(萬元)、y2(萬元)與相應(yīng)生產(chǎn)件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;(2)分別求出這兩個(gè)投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?24.(10分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點(diǎn)A的直線CD⊥MN于點(diǎn)D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點(diǎn)B作BE⊥BD,交MN于點(diǎn)E,進(jìn)而得出:DC+AD=BD.(2)探究證明將直線MN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到圖2的位置寫出此時(shí)線段DC,AD,BD之間的數(shù)量關(guān)系,并證明(3)拓展延伸在直線MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)△ABD面積取得最大值時(shí),若CD長為1,請直接寫B(tài)D的長.25.(10分)在平面直角坐標(biāo)系中,已知直線y=﹣x+4和點(diǎn)M(3,2)(1)判斷點(diǎn)M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當(dāng)它經(jīng)過M關(guān)于坐標(biāo)軸的對稱點(diǎn)時(shí),求平移的距離;(3)另一條直線y=kx+b經(jīng)過點(diǎn)M且與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,當(dāng)y=kx+b隨x的增大而增大時(shí),則n取值范圍是_____.26.(12分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長.27.(12分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長線上時(shí),其余條件不變,求證:PD﹣PE=CF;請運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長之和.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.本題考查角平分線的定義(從一個(gè)角的頂點(diǎn)引出一條射線,把這個(gè)角分成兩個(gè)完全相同的角,這條射線叫做這個(gè)角的角平分線),直角三角形的判定(有一個(gè)角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.2、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當(dāng)他忘記了末位數(shù)字時(shí),要一次能打開的概率是.故選A.3、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.4、A【解析】

根據(jù)點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,所得到的對應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對稱求解即可.【詳解】∵將點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,∴得到的對應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對稱,∵點(diǎn)N(–1,–2),∴得到的對應(yīng)點(diǎn)的坐標(biāo)是(1,2).故選A.本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對稱是解答本題的關(guān)鍵.5、D【解析】試題分析:先根據(jù)平行四邊形的性質(zhì)及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).6、A【解析】

根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計(jì)算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.本題考查的知識點(diǎn)是扇形面積的計(jì)算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.7、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.8、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.9、D【解析】

根據(jù)垂徑定理判斷即可.【詳解】連接DA.∵直徑AB⊥弦CD,垂足為M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故選D.本題考查的是垂徑定理和圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關(guān)鍵.10、A【解析】

根據(jù)正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.本題考查實(shí)數(shù)比較大小,解題的關(guān)鍵是正確理解正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),本題屬于基礎(chǔ)題型.11、C【解析】

設(shè)交點(diǎn)式為y=-(x-m)(x-m+6),在把它配成頂點(diǎn)式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點(diǎn)坐標(biāo)為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設(shè)拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點(diǎn)坐標(biāo)為(m-3,1),∴該函數(shù)圖象向下平移1個(gè)單位長度時(shí)頂點(diǎn)落在x軸上,即拋物線與x軸有且只有一個(gè)交點(diǎn),即n=1.故選C.本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).12、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長率)2,把相關(guān)數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點(diǎn)評:考查列一元二次方程;得到2013年產(chǎn)量的等量關(guān)系是解決本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2【解析】

設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可.【詳解】解:設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由題意,得,解得,,則y=30x-1.

當(dāng)y=0時(shí),

30x-1=0,

解得:x=2.

故答案為:2.本題考查了運(yùn)用待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,由函數(shù)值求自變量的值的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.14、2.04×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值≥1時(shí),n是非負(fù)數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】解:204000用科學(xué)記數(shù)法表示2.04×1.故答案為2.04×1.點(diǎn)睛:本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.15、4或8【解析】

由平移的性質(zhì)可知陰影部分為平行四邊形,設(shè)A′D=x,根據(jù)題意陰影部分的面積為(12?x)×x,即x(12?x),當(dāng)x(12?x)=32時(shí),解得:x=4或x=8,所以AA′=8或AA′=4?!驹斀狻吭O(shè)AA′=x,AC與A′B′相交于點(diǎn)E,∵△ACD是正方形ABCD剪開得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD?AA′=12?x,∵兩個(gè)三角形重疊部分的面積為32,∴x(12?x)=32,整理得,x?12x+32=0,解得x=4,x=8,即移動(dòng)的距離AA′等4或8.本題考查正方形和圖形的平移,熟練掌握計(jì)算法則是解題關(guān)鍵·.16、①②③【解析】

(1)由已知條件易得∠A=∠BDF=60°,結(jié)合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結(jié)論①正確;(2)由已知條件可證點(diǎn)B、C、D、G四點(diǎn)共圓,從而可得∠CDN=∠CBM,如圖,過點(diǎn)C作CM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥ED于點(diǎn)N,結(jié)合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結(jié)論②是正確的;(3)過點(diǎn)F作FK∥AB交DE于點(diǎn)K,由此可得△DFK∽△DAE,△GFK∽△GBE,結(jié)合AF=2DF和相似三角形的性質(zhì)即可證得結(jié)論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結(jié)論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠CDN=∠CBM,如下圖,過點(diǎn)C作CM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥ED于點(diǎn)N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結(jié)論②是正確的;(3)如下圖,過點(diǎn)F作FK∥AB交DE于點(diǎn)K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結(jié)論③成立.綜上所述,本題中正確的結(jié)論是:故答案為①②③點(diǎn)睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質(zhì)的題,題目難度較大,熟悉所涉及圖形的性質(zhì)和判定方法,作出如圖所示的輔助線是正確解答本題的關(guān)鍵.17、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.18、.【解析】

作輔助線,構(gòu)建直角△DMN,先根據(jù)菱形的性質(zhì)得:∠DAC=60°,AE=AF=2,也知菱形的邊長為4,利用勾股定理求MN和DN的長,從而計(jì)算DM的長.【詳解】解:過M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為本題主要考查了菱形的性質(zhì),等腰三角形的性質(zhì),勾股定理及直角三角形30度角的性質(zhì),熟練掌握直角三角形中30°所對的直角邊是斜邊的一半.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、C【解析】

根據(jù)在OB上的兩個(gè)交點(diǎn)之間的距離為3,可知兩交點(diǎn)的橫坐標(biāo)的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個(gè)單位,向上平移1個(gè)單位得到開口向下的拋物線的條數(shù),同理可得開口向上的拋物線的條數(shù),然后相加即可得解.【詳解】解:如圖,開口向下,經(jīng)過點(diǎn)(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個(gè)單位,向上平移1個(gè)單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是:7+7=1.故選C.本題是二次函數(shù)綜合題.主要考查了網(wǎng)格結(jié)構(gòu)的知識與二次函數(shù)的性質(zhì),二次函數(shù)圖象與幾何變換,作出圖形更形象直觀.20、【解析】

解方程組,根據(jù)條件確定a、b的范圍,從而確定滿足該條件的結(jié)果個(gè)數(shù),利用古典概率的概率公式求出方程組只有一個(gè)解的概率.【詳解】∵,得若b>2a,即a=2,3,4,5,6

b=4,5,6符合條件的數(shù)組有(2,5)(2,6)共有2個(gè),若b<2a,符合條件的數(shù)組有(1,1)共有1個(gè),∴概率p=.故答案為:.本題主要考查了古典概率及其概率計(jì)算公式的應(yīng)用.21、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個(gè)實(shí)數(shù)根;(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=5、x1x2=6-p2-p,結(jié)合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個(gè)實(shí)數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點(diǎn)睛:本題考查了根與系數(shù)的關(guān)系以及根的判別式,解題的關(guān)鍵是:(1)牢記“當(dāng)△≥1時(shí),方程有兩個(gè)實(shí)數(shù)根”;(2)根據(jù)根與系數(shù)的關(guān)系結(jié)合x12+x22-x1x2=3p2+1,求出p值.22、(1)y=x+331;(2)1724m.【解析】

(1)先設(shè)函數(shù)一般解析式,然后根據(jù)表格中的數(shù)據(jù)選擇其中兩個(gè)帶入解析式中即可求得函數(shù)關(guān)系式(2)將x=23帶入函數(shù)解析式中求解即可.【詳解】解:(1)設(shè)y=kx+b,∴∴k=,∴y=x+331.(2)當(dāng)x=23時(shí),y=x23+331=344.8∴5344.8=1724.∴此人與煙花燃放地相距約1724m.此題重點(diǎn)考察學(xué)生對一次函數(shù)的實(shí)際應(yīng)用,熟練掌握一次函數(shù)解析式的求法是解題的關(guān)鍵.23、(1)y1=(120-a)x(1≤x≤125,x為正整數(shù)),y2=100x-0.5x2(1≤x≤120,x為正整數(shù));(2)110-125a(萬元),10(萬元);(3)當(dāng)40<a<80時(shí),選擇方案一;當(dāng)a=80時(shí),選擇方案一或方案二均可;當(dāng)80<a<100時(shí),選擇方案二.【解析】

(1)根據(jù)題意直接得出y1與y2與x的函數(shù)關(guān)系式即可;(2)根據(jù)a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因?yàn)椹?.5<0,可求出y2的最大值;(3)第三問要分兩種情況決定選擇方案一還是方案二.當(dāng)2000﹣200a>1以及2000﹣200a<1.【詳解】解:(1)由題意得:y1=(120﹣a)x(1≤x≤125,x為正整數(shù)),y2=100x﹣0.5x2(1≤x≤120,x為正整數(shù));(2)①∵40<a<100,∴120﹣a>0,即y1隨x的增大而增大,∴當(dāng)x=125時(shí),y1最大值=(120﹣a)×125=110﹣125a(萬元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100時(shí),y2最大值=10(萬元);(3)∵由110﹣125a>10,∴a<80,∴當(dāng)40<a<80時(shí),選擇方案一;由110﹣125a=10,得a=80,∴當(dāng)a=80時(shí),選擇方案一或方案二均可;由110﹣125a<10,得a>80,∴當(dāng)80<a<100時(shí),選擇方案二.考點(diǎn):二次函數(shù)的應(yīng)用.24、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】

(1)根據(jù)全等三角形的性質(zhì)求出DC,AD,BD之間的數(shù)量關(guān)系(2)過點(diǎn)B作BE⊥BD,交MN于點(diǎn)E.AD交BC于O,證明,得到,,根據(jù)為等腰直角三角形,得到,再根據(jù),即可解出答案.(3)根據(jù)A、B、C、D四點(diǎn)共圓,得到當(dāng)點(diǎn)D在線段AB的垂直平分線上且在AB的右側(cè)時(shí),△ABD的面積最大.在DA上截取一點(diǎn)H,使得CD=DH=1,則易證,由即可得出答案.【詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過點(diǎn)B作BE⊥BD,交MN于點(diǎn)E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.(3)如圖3中,易知A、B、C、D四點(diǎn)共圓,當(dāng)點(diǎn)D在線段AB的垂直平分線上且在AB的右側(cè)時(shí),△ABD的面積最大.此時(shí)DG⊥AB,DB=DA,在DA上截取一點(diǎn)H,使得CD=DH=1,則易證,∴.本題主要考查全等三角形的性質(zhì),等腰直角三角形的性質(zhì)以及圖形的應(yīng)用,正確作輔助線和熟悉圖形特性是解題的關(guān)鍵.25、(1)點(diǎn)M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點(diǎn)M(1,2)不在直線y=-x+4上;(2)設(shè)直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進(jìn)行討論:①點(diǎn)M(1,2)關(guān)于x軸的對稱點(diǎn)為點(diǎn)M1(1,-2);②點(diǎn)M(1,2)關(guān)于y軸的對稱點(diǎn)為點(diǎn)M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點(diǎn)M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點(diǎn)的橫坐標(biāo)為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點(diǎn)M不在直線y=﹣x+4上,理由如下:∵當(dāng)x=1時(shí),y=﹣1+4=1≠2,∴點(diǎn)M(1,2)不在直線y=﹣x+4上;(2)設(shè)直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點(diǎn)M(1,2)關(guān)于x軸的對稱點(diǎn)為點(diǎn)M1(1,﹣2),∵點(diǎn)M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點(diǎn)M(1,2)關(guān)于y軸的對稱點(diǎn)為點(diǎn)M2(﹣1,2),∵點(diǎn)M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點(diǎn)M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,一次函數(shù)的性質(zhì),解一元一次不等式組,都是基礎(chǔ)知識,需熟練掌握.26、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點(diǎn)G作GN⊥QB交QB的延長線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點(diǎn)G作GN⊥QB交QB的延長線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3小題的要點(diǎn)是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點(diǎn)G作GN⊥QB并交QB的延長線于點(diǎn)N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.27、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論