版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北京市東城區(qū)第十一中學2024-2025學年高三第一次聯(lián)考數(shù)學試題文試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.2.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.03.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.4.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.5.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-16.設(是虛數(shù)單位),則()A. B.1 C.2 D.7.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”8.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-39.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.10.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.11.在復平面內(nèi),復數(shù)對應的點的坐標為()A. B. C. D.12.若,滿足約束條件,則的最大值是()A. B. C.13 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線方程為,則________.14.已知實數(shù),滿足約束條件則的最大值為________.15.角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點,則的值是.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),設為的導數(shù),.(1)求,;(2)猜想的表達式,并證明你的結(jié)論.18.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.19.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.20.(12分)在某外國語學校舉行的(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.女生男生總計獲獎不獲獎總計附表及公式:其中,.21.(12分)如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.22.(10分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學期望為.故選:A.本題考查隨機變量數(shù)學期望的計算,考查計算能力,屬于基礎題.2.D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結(jié)論之間的關系去尋找函數(shù)的解析式要滿足的關系.3.D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.4.C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎題.5.D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.6.A【解析】
先利用復數(shù)代數(shù)形式的四則運算法則求出,即可根據(jù)復數(shù)的模計算公式求出.【詳解】∵,∴.故選:A.本題主要考查復數(shù)代數(shù)形式的四則運算法則的應用,以及復數(shù)的模計算公式的應用,屬于容易題.7.B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.本題考查四種命題的關系,考查推理能力,屬于基礎題.8.D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.解答本題的關鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-29.B【解析】
根據(jù)新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.本題考查定義新運算,關鍵在于理解,運用新定義進行求值,屬于中檔題.10.D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.11.C【解析】
利用復數(shù)的運算法則、幾何意義即可得出.【詳解】解:復數(shù)i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.12.C【解析】
由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學思想以及運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)雙曲線的標準方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎題.14.1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標函數(shù)為,當目標函數(shù)經(jīng)過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,轉(zhuǎn)化目標函數(shù)為當目標函數(shù)經(jīng)過點時,直線的截距最大此時取得最大值1.故答案為:1本題考查了線性規(guī)劃問題,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算能力,屬于基礎題.15.【解析】試題分析:由三角函數(shù)定義知,又由誘導公式知,所以答案應填:.考點:1、三角函數(shù)定義;2、誘導公式.16.1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當且僅當,,時等號成立,故答案為:1.本題主要考查基本不等式的應用,但是由于有3個變量,導致該題不易找到思路,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.,;,證明見解析【解析】
對函數(shù)進行求導,并通過三角恒等變換進行轉(zhuǎn)化求得的表達式,對函數(shù)再進行求導并通過三角恒等變換進行轉(zhuǎn)化求得的表達式;根據(jù)中,的表達式進行歸納猜想,再利用數(shù)學歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數(shù)學歸納法證明:①當時,成立,②假設時,猜想成立即當時,當時,猜想成立由①②對成立本題考查導數(shù)及其應用、三角恒等變換、歸納與猜想和數(shù)學歸納法;考查學生的邏輯推理能力和運算求解能力;熟練掌握用數(shù)學歸納法進行證明的步驟是求解本題的關鍵;屬于中檔題.18.(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調(diào)查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為此題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.19.(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】
(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關系并建立空間直角坐標系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出的坐標從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標系,則平面的一個法向量是,,,.設,,,,代入上式得,,,所以.設平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標為.本題考查面面垂直的證明以及利用向量法求解二面角有關的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結(jié)合圖形分析.20.(Ⅰ),;(Ⅱ)詳見解析.【解析】
(Ⅰ)根據(jù)概率的性質(zhì)知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,從而可得列聯(lián)表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,列聯(lián)表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認為“獲獎與女生,男生有關.”本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數(shù)的問題,熟記獨立性檢驗的思想,以及平均數(shù)的計算方法即可,屬于常考題型.21.(1).(2).【解析】分析:(1)直接建立空間直角坐標系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求解即可;(2)先分別得出兩個面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點,,,分別為軸,軸,軸建立如圖空間直角坐標系,由,,得,,,,,,則,,,設平面的一個法向量為,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招投標項目成本控制與優(yōu)化
- 節(jié)能減排廉潔自律招投標守則
- 咖啡館租賃合同草稿
- 腹股溝斜疝修補術(shù)后護理
- 建筑施工勞務合同:旅游設施建設
- 醫(yī)療機構(gòu)市場營銷與市場定位
- 公路充電設施維護合同范本
- 木材加工安全事故預防
- 屋頂修復漏水施工合同
- 制造業(yè)用工規(guī)范承諾書
- 《分子和原子》參考課件
- 河南中職語文-基礎模塊上冊-(高教版)第一單元測試題含答案
- 設備維修保養(yǎng)人員專業(yè)素質(zhì)培養(yǎng)
- 27《一個粗瓷大碗》(教學設計)統(tǒng)編版語文三年級上冊
- 學前兒童聽說游戲活動(學前兒童語言教育活動課件)
- 環(huán)境藝術(shù)設計發(fā)展現(xiàn)狀分析報告
- 培訓機構(gòu)校長競聘
- 企業(yè)微信指導手冊管理員版
- 孫子兵法中的思維智慧智慧樹知到期末考試答案2024年
- 臨床試驗方案偏離處理流程
- 乳腺癌一病一品
評論
0/150
提交評論