海南省三亞市級名校2024-2025學(xué)年初三下學(xué)期第一次段考數(shù)學(xué)試題試卷含解析_第1頁
海南省三亞市級名校2024-2025學(xué)年初三下學(xué)期第一次段考數(shù)學(xué)試題試卷含解析_第2頁
海南省三亞市級名校2024-2025學(xué)年初三下學(xué)期第一次段考數(shù)學(xué)試題試卷含解析_第3頁
海南省三亞市級名校2024-2025學(xué)年初三下學(xué)期第一次段考數(shù)學(xué)試題試卷含解析_第4頁
海南省三亞市級名校2024-2025學(xué)年初三下學(xué)期第一次段考數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

海南省三亞市級名校2024-2025學(xué)年初三下學(xué)期第一次段考數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是72.不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的6個(gè)球,其中4個(gè)黑球、2個(gè)白球,從袋子中一次摸出3個(gè)球,下列事件是不可能事件的是()A.摸出的是3個(gè)白球 B.摸出的是3個(gè)黑球C.摸出的是2個(gè)白球、1個(gè)黑球 D.摸出的是2個(gè)黑球、1個(gè)白球3.如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.34.如圖,已知點(diǎn)A在反比例函數(shù)y=上,AC⊥x軸,垂足為點(diǎn)C,且△AOC的面積為4,則此反比例函數(shù)的表達(dá)式為()A.y= B.y= C.y= D.y=﹣5.九章算術(shù)是中國古代數(shù)學(xué)專著,九章算術(shù)方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時(shí)候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設(shè)走路快的人要走

x

步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.6.實(shí)數(shù)的相反數(shù)是()A.- B. C. D.7.實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,則代數(shù)式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b8.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是59.如圖,A、B兩點(diǎn)在雙曲線y=上,分別經(jīng)過A、B兩點(diǎn)向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.610.如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.80二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標(biāo)系xOy中,點(diǎn)A(4,3)為⊙O上一點(diǎn),B為⊙O內(nèi)一點(diǎn),請寫出一個(gè)符合條件要求的點(diǎn)B的坐標(biāo)______.12.如圖,AB=AC,AD∥BC,若∠BAC=80°,則∠DAC=__________.13.如圖,點(diǎn)是反比例函數(shù)圖像上的兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過點(diǎn)作軸于點(diǎn),交于點(diǎn),延長交軸于點(diǎn),已知,,則的值為__________.14.用半徑為6cm,圓心角為120°的扇形圍成一個(gè)圓錐,則圓錐的底面圓半徑為_______cm.15.現(xiàn)有八個(gè)大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時(shí),中間留下了一個(gè)邊長為2的小正方形,則每個(gè)小矩形的面積是_____.16.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C.動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動,終點(diǎn)為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點(diǎn)運(yùn)動時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為17.如圖,AC、BD為圓O的兩條垂直的直徑,動點(diǎn)P從圓心O出發(fā),沿線段OC-A.B.C.D.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:1+xx2-119.(5分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長線于點(diǎn)P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=12,求DN20.(8分)綜合與實(shí)踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對矩形中的折疊問題進(jìn)行了研究.問題背景:在矩形ABCD中,點(diǎn)E、F分別是BC、AD上的動點(diǎn),且BE=DF,連接EF,將矩形ABCD沿EF折疊,點(diǎn)C落在點(diǎn)C′處,點(diǎn)D落在點(diǎn)D′處,射線EC′與射線DA相交于點(diǎn)M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點(diǎn)M時(shí),判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),請?jiān)趫D2中作出此時(shí)的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點(diǎn)M在線段DA延長線上時(shí),線段C′D'分別與AD,AB交于P,N兩點(diǎn)時(shí),C′E與AB交于點(diǎn)Q,連接MN并延長MN交EF于點(diǎn)O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點(diǎn)E由點(diǎn)B運(yùn)動到點(diǎn)C的過程中,點(diǎn)D'所經(jīng)過的路徑的長為.21.(10分)如圖,已知△ABC.(1)請用直尺和圓規(guī)作出∠A的平分線AD(不要求寫作法,但要保留作圖痕跡);(2)在(1)的條件下,若AB=AC,∠B=70°,求∠BAD的度數(shù).22.(10分)如圖,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),.點(diǎn)在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點(diǎn).求、的值;如圖①,連接,線段上的點(diǎn)關(guān)于直線的對稱點(diǎn)恰好在線段上,求點(diǎn)的坐標(biāo);如圖②,動點(diǎn)在線段上,過點(diǎn)作軸的垂線分別與交于點(diǎn),與拋物線交于點(diǎn).試問:拋物線上是否存在點(diǎn),使得與的面積相等,且線段的長度最小?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.23.(12分)某校為了解學(xué)生體質(zhì)情況,從各年級隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,每個(gè)學(xué)生的測試成績按標(biāo)準(zhǔn)對應(yīng)為優(yōu)秀、良好、及格、不及格四個(gè)等級,統(tǒng)計(jì)員在將測試數(shù)據(jù)繪制成圖表時(shí)發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計(jì)4人,良好漏統(tǒng)計(jì)6人,于是及時(shí)更正,從而形成如圖圖表,請按正確數(shù)據(jù)解答下列各題:學(xué)生體能測試成績各等次人數(shù)統(tǒng)計(jì)表體能等級調(diào)整前人數(shù)調(diào)整后人數(shù)優(yōu)秀8良好16及格12不及格4合計(jì)40(1)填寫統(tǒng)計(jì)表;(2)根據(jù)調(diào)整后數(shù)據(jù),補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該校共有學(xué)生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數(shù).24.(14分)如圖,方格紙中每個(gè)小正方形的邊長均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點(diǎn)C和點(diǎn)D均在小正方形的頂點(diǎn)上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上,連接CE,請直接寫出線段CE的長.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關(guān)鍵是明確它們的意義才會計(jì)算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個(gè)數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個(gè)數(shù),這個(gè)數(shù)就是中位數(shù),如果正中間是兩個(gè)數(shù),那中位數(shù)是這兩個(gè)數(shù)的平均數(shù).2、A【解析】由題意可知,不透明的袋子中總共有2個(gè)白球,從袋子中一次摸出3個(gè)球都是白球是不可能事件,故選B.3、C【解析】

過點(diǎn)P作平行四邊形PGBD,EPHC,進(jìn)而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,且都等于60°.4、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負(fù),至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.本題是關(guān)于反比例函數(shù)的題目,需結(jié)合反比例函數(shù)中系數(shù)k的幾何意義解答;5、B【解析】解:設(shè)走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點(diǎn)睛:本題考查了一元一次方程的應(yīng)用.找準(zhǔn)等量關(guān)系,列方程是關(guān)鍵.6、A【解析】

根據(jù)相反數(shù)的定義即可判斷.【詳解】實(shí)數(shù)的相反數(shù)是-故選A.此題主要考查相反數(shù)的定義,解題的關(guān)鍵是熟知相反數(shù)的定義即可求解.7、A【解析】

根據(jù)數(shù)軸得到b<a<0<c,根據(jù)有理數(shù)的加法法則,減法法則得到c-a>0,a+b<0,根據(jù)絕對值的性質(zhì)化簡計(jì)算.【詳解】由數(shù)軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.本題考查的是實(shí)數(shù)與數(shù)軸,絕對值的性質(zhì),能夠根據(jù)數(shù)軸比較實(shí)數(shù)的大小,掌握絕對值的性質(zhì)是解題的關(guān)鍵.8、D【解析】分別計(jì)算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項(xiàng)A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項(xiàng)B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項(xiàng)C正確;極差為:14﹣5=9,故選項(xiàng)D錯(cuò)誤.故選D9、D【解析】

欲求S1+S1,只要求出過A、B兩點(diǎn)向x軸、y軸作垂線段與坐標(biāo)軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點(diǎn)A、B是雙曲線y=上的點(diǎn),分別經(jīng)過A、B兩點(diǎn)向x軸、y軸作垂線段,

則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個(gè)矩形的面積都等于|k|=4,

∴S1+S1=4+4-1×1=2.

故選D.10、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點(diǎn):勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、(2,2).【解析】

連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點(diǎn)與圓的位置關(guān)系可得一個(gè)符合要求的點(diǎn)B的坐標(biāo).【詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點(diǎn),∴符合要求的點(diǎn)B的坐標(biāo)(2,2)答案不唯一.故答案為:(2,2).考查了點(diǎn)與圓的位置關(guān)系,坐標(biāo)與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.12、50°【解析】

根據(jù)等腰三角形頂角度數(shù),可求出每個(gè)底角,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等解答.【詳解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案為50°.本題考查了等腰三角形的性質(zhì)以及平行線性質(zhì)的應(yīng)用,注意:兩直線平行,內(nèi)錯(cuò)角相等.13、【解析】

過點(diǎn)B作BF⊥OC于點(diǎn)F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因?yàn)椋?,,又因?yàn)锳D∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因?yàn)镾△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點(diǎn)B作BF⊥OC于點(diǎn)F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運(yùn)用相似三角形的判定定理和性質(zhì)定理.14、1.【解析】

解:設(shè)圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.本題考查圓錐的計(jì)算,掌握公式正確計(jì)算是解題關(guān)鍵.15、1.【解析】

設(shè)小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設(shè)小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.本題考查了二元一次方程組的應(yīng)用.16、A【解析】試題分析:①當(dāng)點(diǎn)P在OA上運(yùn)動時(shí),OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當(dāng)點(diǎn)P在AB上運(yùn)動時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,y),則S=xy=k,為定值,故B、D選項(xiàng)錯(cuò)誤;③當(dāng)點(diǎn)P在BC上運(yùn)動時(shí),S隨t的增大而逐漸減小,故C選項(xiàng)錯(cuò)誤.故選A.考點(diǎn):1.反比例函數(shù)綜合題;2.動點(diǎn)問題的函數(shù)圖象.17、C.【解析】分析:根據(jù)動點(diǎn)P在OC上運(yùn)動時(shí),∠APB逐漸減小,當(dāng)P在上運(yùn)動時(shí),∠APB不變,當(dāng)P在DO上運(yùn)動時(shí),∠APB逐漸增大,即可得出答案.解答:解:當(dāng)動點(diǎn)P在OC上運(yùn)動時(shí),∠APB逐漸減??;當(dāng)P在上運(yùn)動時(shí),∠APB不變;當(dāng)P在DO上運(yùn)動時(shí),∠APB逐漸增大.故選C.三、解答題(共7小題,滿分69分)18、3+3【解析】

先化簡分式,再計(jì)算x的值,最后把x的值代入化簡后的分式,計(jì)算出結(jié)果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當(dāng)x=2cos30°+tan45°=2×32=3+1時(shí).xx-1=本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關(guān)鍵是掌握分式的運(yùn)算法則和運(yùn)算順序.19、(1)見解析;(2)23π;(3)【解析】

(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長公式計(jì)算即可;(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,∵點(diǎn)M是的中點(diǎn),∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長的計(jì)算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.20、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進(jìn)而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進(jìn)而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點(diǎn)D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點(diǎn)D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點(diǎn)E由點(diǎn)B運(yùn)動到點(diǎn)C的過程中,點(diǎn)D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、弧長計(jì)算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.21、(1)見解析;(2)20°;【解析】

(1)尺規(guī)作一個(gè)角的平分線是基本尺規(guī)作圖,根據(jù)作圖步驟即可畫圖;(2)運(yùn)用等腰三角形的性質(zhì)再根據(jù)角平分線的定義計(jì)算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論