版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
質(zhì)點運動學(xué)第一章第一節(jié)
參考系和坐標(biāo)系質(zhì)點
第二節(jié)
質(zhì)點運動的描述
第三節(jié)
圓周運動第四節(jié)
伽利略變換第一節(jié)
參考系和坐標(biāo)系質(zhì)點
一、參考系二、坐標(biāo)系三、質(zhì)點一、參考系1、參考系運動的絕對性——物體在不停地運動運動的相對性——物體的運動或靜止總是相對于某個選定的物體而言以地球為參照系地球月亮以太陽為參照系太陽月亮地球軌道參考系的定義為描述物體的運動而選擇的標(biāo)準(zhǔn)物*描述物體的運動時,必須指明參考系;*選不同的參照系,運動的描述是不同的。說明*參考系的選擇是任意的;一、參考系說明xyzO定量地描述物體相對于參照系的運動。物理學(xué)中常用的坐標(biāo)系直角坐標(biāo)系自然坐標(biāo)系極坐標(biāo)系坐標(biāo)系的選擇是任意的;坐標(biāo)系的選擇不同,描述物體運動的方程是不同的,但描述質(zhì)點的運動本質(zhì)是相同的。zo
Rxy
z
R柱坐標(biāo)系球坐標(biāo)系二、坐標(biāo)系概念質(zhì)點:具有一定質(zhì)量不計其形狀與大小的物體,是理想模型。質(zhì)點是一個理想化的力學(xué)模型。說明引入條件物體各點的運動狀態(tài)完全相同,即平動。物體的大小和形狀與所研究的問題無關(guān)或所起的作用不顯著,可以忽略不計。三、質(zhì)點研究地球公轉(zhuǎn)地球上各點的公轉(zhuǎn)速度相差很小,忽略地球自身尺寸的影響,作為質(zhì)點處理。研究地球自轉(zhuǎn)地球上各點的自轉(zhuǎn)速度相差很大,不能作為質(zhì)點處理。只要物體足夠小,就可以看成質(zhì)點?三、質(zhì)點一、位置矢量、運動方程、位移二、瞬時速度矢量與瞬時加速度矢量三、質(zhì)點運動學(xué)的兩類問題第二節(jié)
質(zhì)點運動的描述
一、位置矢量、運動方程、位移1、位置矢量基本概念從原點O到質(zhì)點所在的位置P點的有向線段,叫做位置矢量或位矢。zOxy
P(x,y,z)位矢方向:2.運動方程建直角坐標(biāo)系O–xyz,令原點與參考點重合,則:運動方程——質(zhì)點的位置隨時間變化的函數(shù)方程說明位置矢量是矢量:有大小和方向;具有瞬時性;具有相對性.一、位置矢量、運動方程、位移標(biāo)量式
x=x(t)y=y(t)z=z(t)軌跡方程——質(zhì)點在運動過程中描出的曲線方程.在運動方程中消去t就是軌跡方程,y=y(x)3.軌跡方程如軌跡為:半徑為2m的圓周一、位置矢量、運動方程、位移4.位移
B
Aoxyz位移反映質(zhì)點位置變化的物理量,從初始位置指向末位置的有向線段。ΔS方向:一、位置矢量、運動方程、位移大小:
B
Aoxyz路程是質(zhì)點經(jīng)過實際路徑的長度。路程是標(biāo)量。ΔS一、位置矢量、運動方程、位移☆位移與路程不同,前者是矢量,后者是標(biāo)量.位移與路程PO☆當(dāng)Δt趨近于0時☆位移與路程都與一段時間相對應(yīng)一、位置矢量、運動方程、位移☆位置矢量與位移*位置矢量與位移都是矢量;
*位置矢量r=r(t),與某時刻對應(yīng),具有瞬時性;位移與一段時間相對應(yīng)。
一、位置矢量、運動方程、位移1.平均速度平均速度平均速率OP1P2定義大小為二、瞬時速度矢量與瞬時加速度矢量只能粗略的描述質(zhì)點的運動情況2.瞬時速度
oP1
當(dāng)
t0時,P2點向P1點無限靠近。P2P2P2P2P2P2P2P2P2大?。核矔r速度反映質(zhì)點在某時或某位置的運動狀態(tài).二、瞬時速度矢量與瞬時加速度矢量瞬時速率(簡稱速率)在直角坐標(biāo)系中的分解式瞬時速率是標(biāo)量二、瞬時速度矢量與瞬時加速度矢量3.加速度加速度是描述質(zhì)點速度的大小和方向隨時間變化快慢的物理量。x
y
z
P2
P1
o二、瞬時速度矢量與瞬時加速度矢量x
y
z
P2
P1
o注意區(qū)分、o平均加速度平均加速度是矢量,方向與速度增量的方向相同。二、瞬時速度矢量與瞬時加速度矢量瞬時加速度
與瞬時速度的定義相類似,瞬時加速速度是一個極限值
瞬時加速度簡稱加速度,它是矢量,在直角坐標(biāo)系中用分量表示:二、瞬時速度矢量與瞬時加速度矢量加速度的方向就是時間
t趨近于零時,速度增量的極限方向。加速度與速度的方向一般不同。方向用方向余弦來表示大小的方向余弦二、瞬時速度矢量與瞬時加速度矢量求導(dǎo)1.已知質(zhì)點的運動方程,求質(zhì)點在任意時刻的速度和加速度;2.已知速度和加速度及初始條件(初始時刻質(zhì)點的位置和速度),求質(zhì)點的運動方程;積分求導(dǎo)兩次求導(dǎo)積分兩次積分三、質(zhì)點運動學(xué)的兩類問題[例題1-1]一質(zhì)點在平面上運動,已知質(zhì)點位置矢量的表達式為
(其中a、b為常量),則該質(zhì)點作何種形式的運動?[解]其運動方程:得軌道方程為:
質(zhì)點的速度:
質(zhì)點的加速度:
可見,質(zhì)點的加速度為非零恒量,故該質(zhì)點在xy平面內(nèi)作勻變速直線運動,其軌道方程為
[例題1-2]一質(zhì)點沿x軸作直線運動,其位置與時間的關(guān)系為x=4.5t2-2t3(SI),試求:(1)第2秒內(nèi)的平均速度;(2)第2秒末的瞬時速度;(3)第3秒末的加速度
[解]★解題指導(dǎo):將運動方程
對時間求一階導(dǎo)數(shù),即可求得速度;對運動方程求二階導(dǎo)數(shù),即可求得加速度。
【例題1-3】一質(zhì)點沿x軸運動,其加速度為a=4t(SI),已知t=0時,質(zhì)點位于為x0=10m處,初速度v0=0。試求其位置和時間的關(guān)系式?!纠}1-4】一質(zhì)點沿x軸運動,其加速度a與位置坐標(biāo)的關(guān)系為a=3+6x2(SI)。如果質(zhì)點在原點處的速度為零,試求其在任意位置處的速度。解:設(shè)質(zhì)點在任意位置x處的速度為v,則分離變量,兩邊積分:得:
【例題1-5】一質(zhì)點沿x軸運動,其加速度a與位置坐標(biāo)的關(guān)系為
(SI),已知t=0時,質(zhì)點速度為-2m/s,試求質(zhì)點在任意時刻的速度。分離變量,兩邊積分:得★解題指導(dǎo):根據(jù)速度和加速度的定義式,寫出方程,然后分離變量,運用初始條件并積分,可求出相應(yīng)的物理量(對有關(guān)變量的函數(shù)關(guān)系)。
1.關(guān)于加速度的物理意義,下列說法正確的是[]加速度是描述物體運動快慢的物理量加速度是描述物體位移變化率的物理量加速度是描述物體速度變化的物理量加速度是描述物體速度變化率的物理量ABCD提交單選題1分
2.一沿直線運動的物體,其速度與時間成反比,則其加速度大小與速度大小的關(guān)系是[]與速度成正比與速度平方成正比與速度成反比與速度平方成反比ABCD提交單選題1分作業(yè):1-51-91-11第三節(jié)
圓周運動一、圓周運動的線量描述二、圓周運動的角量描述三、線量和角量之間的關(guān)系目錄一、圓周運動的線量描述自然坐標(biāo)系用由原點至質(zhì)點位置的弧長
s
作為質(zhì)點位置坐標(biāo)s,
s
可正可負,正方向為運動的前進方向.法向單位矢量沿曲線法向且指向曲線的凹側(cè).切向單位矢量沿曲線切向,指向s>0方向.自然坐標(biāo)系選軌跡上一點
為原點自然坐標(biāo)系的單位矢量方向是變化的。直角坐標(biāo)系與自然坐標(biāo)系的區(qū)別1.直角坐標(biāo)系的坐標(biāo)原點不一定在質(zhì)點的運動軌跡上;自然坐標(biāo)系的原點一定在質(zhì)點的運動軌道上;2.直角坐標(biāo)系的單位矢量是恒矢量(大小方向不變);自然坐標(biāo)系的單位矢量方向是變化的。1.線速度運動方程AB當(dāng)時的方向趨于位移起點的切線,質(zhì)點做曲線運動時,任意時刻的速度其方向總沿軌跡的切線方向,在法線方向上沒有分量其大小趨于對應(yīng)的弧長
由于質(zhì)點速度的方向一定沿著軌跡的切向,因此,自然坐標(biāo)系中可將速度表示為:由加速度的定義有2.加速度d
dsPPd
以圓周運動為例討論上式中兩個分項的物理意義:
如圖,圓周半徑為R,質(zhì)點在dt時間內(nèi)經(jīng)歷弧長ds,對應(yīng)于角位移d
,切線的方向改變d
角度。作出dt始末時刻的切向單位矢,由矢量三角形法則可求出切向單位矢的增量為根據(jù)相似三角形將上式同除,再取極限代入方向:法線方向Pd
P
于是前面的加速度表達式可寫為:即圓周運動的加速度可分解為兩個正交分量:at稱切向加速度,其大小表示質(zhì)點速率變化的快慢;an稱法向加速度,其大小反映質(zhì)點速度方向變化的快慢。
上述加速度表達式對任何平面曲線運動都適用,但式中半徑R要用曲率半徑
代替。由的大小為P
二、圓周運動的角量描述當(dāng)質(zhì)點沿著圓周運動時,隨時間變化,即質(zhì)點的運動學(xué)方程可表示為角位移平均角速度角速度角坐標(biāo)對時間一階導(dǎo)數(shù)
角速度的增量為
平均角加速度
瞬時角加速度
它等于角速度對時間的一階導(dǎo)數(shù),也等于用坐標(biāo)對時間的二階導(dǎo)數(shù)。在國際單位制中,角坐標(biāo)的單位為rad,角速度的單位為rad/s,角加速度的單位為rad/s2。三、線量和角量之間的關(guān)系1.圓周運動的路程與角位移2.圓周運動的線速度與角速度3.加速度與角速度、角加速度之間的關(guān)系[例題1-6]
汽車在半徑為200m的圓弧形公路上剎車,剎車開始階段的運動學(xué)方程為(SI)。求汽車在t=1s時的加速度.解:
加速度將R=200m及t=1s代入上列各式,得為加速度與的夾角.【例題1-7】一質(zhì)點沿半徑為r的圓周運動,其初速度為v0,切向加速度為-b。求:(1)t時刻的速率;(2)t時刻質(zhì)點的切向加速度和法向加速度的大小。解:(1)切向加速度與速度的關(guān)系為分離變量并積分得(2)切向加速度為法向加速度為【例題1-8】在O-xy坐標(biāo)平面內(nèi),質(zhì)點沿著圓心為O、半徑為r的圓周運動,其運動學(xué)方程為。求:(1)角速度、角加速度、線速度v、切向加速度、法向加速度各量對時間t的函數(shù)關(guān)系式。(2)當(dāng)圓周的半徑為時,再次求出這五個物理量對時間t的函數(shù)關(guān)系式。解:(1)由題意,質(zhì)點的運動學(xué)方程為運用分別可得運用線量和角量之間的關(guān)系可得(2)運用線量和角量之間的關(guān)系可得思考:將上述兩種情形的角量與線量相對比,可以得到什么結(jié)論?【例題1-9】設(shè)電扇葉片尖端的切向加速度為法向加速度的3倍,求:風(fēng)扇的轉(zhuǎn)動速度大小由增大到時,所需要的時間是多少?解:設(shè)時,時,
則因為可得分離變量兩邊積分得★解題指導(dǎo):上述例題1-6屬于運動學(xué)中的第一類問題,例題1-7屬于運動學(xué)中的第二類問題。運動學(xué)中的第一類問題解題的關(guān)鍵是明確角坐標(biāo)、角速度和角加速度之間導(dǎo)數(shù)關(guān)系;運動學(xué)中的第二類問題解題的關(guān)鍵是明確角坐標(biāo)、角速度和角加速度之間積分關(guān)系。但是注意的是法向加速度與速度大小和半徑大小有關(guān)。1.作勻速圓周運動的物體()速度不變加速度不變切向加速度等于零法向加速度等于零ABCD提交單選題1分2.半徑為30cm的飛輪,從靜止開始以的勻角加速度轉(zhuǎn)動,則飛輪邊緣上一點在飛輪轉(zhuǎn)過240°時的切向加速度的大小為[填空1]m/s,法向加速度的大小為[填空2]m/s2
作答填空題2分作業(yè):1-151-161-17一、時間與空間二、伽利略變換三、伽利略速度變換關(guān)系第四節(jié)伽利略變換
四、加速度對伽利略變換為不變量運動描述具有相對性:觀察小球的運動勻速運動車上的人觀察地面上的人觀察豎直上拋運動斜拋運動
運動是相對的,如果我們選擇的兩個參考系有相對運動,那么我們在這兩個參考系中觀測同一物體的運動情況是不一樣的。在兩個作相對運動的參考系中,研究同一物體的運動之間的關(guān)系,就是相對運動問題。由此可見一、時間與空間在兩個作相對直線運動的參考系中,時間的測量與參考系無關(guān)。1.時間的絕對性在兩個作相對直線運動的參考系中,長度的測量與參考系無關(guān)。2.空間的絕對性3.經(jīng)典力學(xué)的時空觀1)絕對空間:空間兩點之間的距離不管從哪個坐標(biāo)系測量,結(jié)果都是相同的;2)絕對時間:同一運動所經(jīng)歷的時間在不同的坐標(biāo)系中測量都是相同的。二、伽利略變換設(shè)O為基本參考系,為動參考系質(zhì)點在空間運動,某時刻位于P點正變換逆變換伽利略坐標(biāo)變換設(shè)相對O以速度作勻速直線運動三、伽利略速度變換關(guān)系絕對運動:物體相對基本參考系的運動.相對運動:物體相對動參考系的運動.牽連速度
絕對速度相對速度牽連運動:
相對O的運動.四、加速度對伽利略變換為不變量加速度加速度對伽利略變換具有不變性.【例題1-10】
東流的江水,流速為v1=4m/s,
一船在江中以航速v2=3m/s向正北行駛(如圖1-8所示)。試求:岸上的人將看到船以多大的速率v,向什么方向航行?解:以岸為O系,江水為O’系船相對于岸的速度方向江水的流速為牽連速度,船相對于水的速度為相對速度?!揪毩?xí)】一人騎自行車向東而行,在速度為10m/s時,覺得有南風(fēng);速度增至15m/s時,覺得有東南風(fēng).求風(fēng)的速度.東南解:選地為基本坐標(biāo)系O,人為動坐標(biāo)系O’
設(shè)風(fēng)速為風(fēng)相對于人人的速度=+應(yīng)用:解決相對運動問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《小型建筑設(shè)計》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《媒體寫作與運營》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年共同保護協(xié)議書模板范本
- 吉林師范大學(xué)《篆書理論與技法III》2021-2022學(xué)年第一學(xué)期期末試卷
- 合伙人股權(quán)避稅協(xié)議書范文模板
- 施工現(xiàn)場水泥土換填檢測方案
- 吉林師范大學(xué)《馬克思主義新聞觀》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林師范大學(xué)《環(huán)境統(tǒng)計學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 食品配送數(shù)據(jù)分析與優(yōu)化方案
- 吉林師范大學(xué)《大學(xué)體育Ⅰ》2021-2022學(xué)年第一學(xué)期期末試卷
- 廣東省深圳市2023-2024學(xué)年高一上學(xué)期生物期中試卷(含答案)
- 第七章 立體幾何與空間向量綜合測試卷(新高考專用)(學(xué)生版) 2025年高考數(shù)學(xué)一輪復(fù)習(xí)專練(新高考專用)
- 大學(xué)美育(同濟大學(xué)版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 過敏性休克完整版本
- 08D800-8民用建筑電氣設(shè)計與施工防雷與接地
- 應(yīng)急第一響應(yīng)人理論考試試卷(含答案)
- 2024年湖北省工業(yè)建筑集團有限公司招聘筆試參考題庫含答案解析
- 十分鐘EE從入門到精通2.0
- 10000中國普通人名大全
- 現(xiàn)金流量表excel表格模板.doc
- 合同管理制度與流程圖(附內(nèi)控體系表)
評論
0/150
提交評論