版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
寧夏回族自治區(qū)長(zhǎng)慶高級(jí)中學(xué)2025屆高中畢業(yè)班第三次教學(xué)質(zhì)量監(jiān)測(cè)文綜試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.2.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.3.已知正方體的棱長(zhǎng)為1,平面與此正方體相交.對(duì)于實(shí)數(shù),如果正方體的八個(gè)頂點(diǎn)中恰好有個(gè)點(diǎn)到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.4.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.545.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.86.過(guò)拋物線C:y2=4x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.7.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.8.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④9.已知,函數(shù),若函數(shù)恰有三個(gè)零點(diǎn),則()A. B.C. D.10.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.11.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.12.若樣本的平均數(shù)是10,方差為2,則對(duì)于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為8二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中,若的奇數(shù)次冪的項(xiàng)的系數(shù)之和為32,則________.14.的展開(kāi)式中的系數(shù)為_(kāi)_______.15.已知“在中,”,類(lèi)比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.16.古代“五行”學(xué)認(rèn)為:“物質(zhì)分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,但排列中屬性相克的兩種物質(zhì)不相鄰,則這樣的排列方法有_________種.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.18.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的面積.19.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).21.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.22.(10分)己知函數(shù).(1)當(dāng)時(shí),求證:;(2)若函數(shù),求證:函數(shù)存在極小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.本題考查利用圖象求三角函數(shù)解析式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.2.B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3.B【解析】
此題畫(huà)出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個(gè)點(diǎn)到平面的距離為;如圖(2)恰好有4個(gè)點(diǎn)到平面的距離為;如圖(3)恰好有6個(gè)點(diǎn)到平面的距離為.所以本題答案為B.本題以空間幾何體為載體考查點(diǎn),面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和知識(shí)方法的遷移能力,屬于難題.4.C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.5.C【解析】
先確定集合中元素,可得非空子集個(gè)數(shù).【詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).6.C【解析】
聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長(zhǎng)為4的等邊三角形,計(jì)算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長(zhǎng)為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7.C【解析】
根據(jù)題意,知當(dāng)時(shí),,由對(duì)稱(chēng)軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對(duì)稱(chēng)軸可知,滿(mǎn)足,即.同理,滿(mǎn)足,即,∴,,所以最小正周期為:.故選:C.本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對(duì)稱(chēng)性的應(yīng)用,考查計(jì)算能力.8.D【解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對(duì)四個(gè)命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線垂直的直線才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.9.C【解析】
當(dāng)時(shí),最多一個(gè)零點(diǎn);當(dāng)時(shí),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫(huà)函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時(shí),,得;最多一個(gè)零點(diǎn);當(dāng)時(shí),,,當(dāng),即時(shí),,在,上遞增,最多一個(gè)零點(diǎn).不合題意;當(dāng),即時(shí),令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個(gè)零點(diǎn);根據(jù)題意函數(shù)恰有3個(gè)零點(diǎn)函數(shù)在上有一個(gè)零點(diǎn),在,上有2個(gè)零點(diǎn),如圖:且,解得,,.故選.遇到此類(lèi)問(wèn)題,不少考生會(huì)一籌莫展.由于方程中涉及兩個(gè)參數(shù),故按“一元化”想法,逐步分類(lèi)討論,這一過(guò)程中有可能分類(lèi)不全面、不徹底.10.D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.11.B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.12.D【解析】
由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進(jìn)而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:由已知得,故的展開(kāi)式中x的奇數(shù)次冪項(xiàng)分別為,,,,,其系數(shù)之和為,解得.考點(diǎn):二項(xiàng)式定理.14.80.【解析】
只需找到展開(kāi)式中的項(xiàng)的系數(shù)即可.【詳解】展開(kāi)式的通項(xiàng)為,令,則,故的展開(kāi)式中的系數(shù)為80.故答案為:80.本題考查二項(xiàng)式定理的應(yīng)用,涉及到展開(kāi)式中的特殊項(xiàng)系數(shù),考查學(xué)生的計(jì)算能力,是一道容易題.15.【解析】
類(lèi)比,三角形邊長(zhǎng)類(lèi)比三棱錐各面的面積,三角形內(nèi)角類(lèi)比三棱錐中側(cè)棱與面所成角.【詳解】,故,本題考查類(lèi)比推理.類(lèi)比正弦定理可得,類(lèi)比時(shí)有結(jié)構(gòu)類(lèi)比,方法類(lèi)比等.16.1.【解析】試題分析:由題意,可看作五個(gè)位置排列五種事物,第一位置有五種排列方法,不妨假設(shè)排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設(shè)排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數(shù)有5×2×1×1×1=1.考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.點(diǎn)評(píng):本題考查排列排列組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,解答本題關(guān)鍵是理解題設(shè)中的限制條件及“五行”學(xué)說(shuō)的背景,利用分步原理正確計(jì)數(shù),本題較抽象,計(jì)數(shù)時(shí)要考慮周詳.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【解析】
(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.本題考查線段中點(diǎn)的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.18.(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計(jì)算出直線截圓所得弦長(zhǎng),并計(jì)算出原點(diǎn)到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因?yàn)榍€的圓心為,半徑為,圓心到直線的距離為,則弦長(zhǎng).又到直線的距離為,所以.本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線與圓中三角形面積的計(jì)算,考查計(jì)算能力,屬于中等題.19.(1)(2)【解析】
(1)利用分段討論法去掉絕對(duì)值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問(wèn)題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時(shí),則所以不等式的解集為.(2)等價(jià)于,而,故等價(jià)于,所以或,即或,所以實(shí)數(shù)a的取值范圍為.本題考查含有絕對(duì)值的不等式解法、不等式恒成立問(wèn)題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類(lèi)討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度一般.20.(1);(2)最小值為,此時(shí)【解析】
(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點(diǎn)到直線的最小距離.設(shè)在時(shí),,是最小值,此時(shí),所以,所求最小值為,此時(shí)本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.21.(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)先根據(jù)絕對(duì)值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開(kāi)平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開(kāi)平方得.同理可得,.三式相加,得.本題考查絕對(duì)值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.22
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版監(jiān)控設(shè)備銷(xiāo)售與維護(hù)保養(yǎng)合同3篇
- 二零二五年度果樹(shù)種植與農(nóng)業(yè)科研合作承包合同2篇
- 二零二五版建筑工地場(chǎng)地勘查與風(fēng)險(xiǎn)評(píng)估委托合同3篇
- 二零二五版國(guó)際機(jī)場(chǎng)ATM設(shè)備場(chǎng)地租賃與廣告合作合同3篇
- 二零二五版礦業(yè)勘探承包作業(yè)合同樣本2篇
- 二零二五版智能停車(chē)場(chǎng)設(shè)計(jì)與施工合同3篇
- 二零二五版板房租賃合同附帶設(shè)施設(shè)備維修協(xié)議3篇
- 二零二五版抵押房屋買(mǎi)賣(mài)合同與房屋保險(xiǎn)服務(wù)合同3篇
- 二零二五版辦公場(chǎng)地租賃與人力資源服務(wù)合同范本3篇
- 二零二五版雞蛋養(yǎng)殖基地技術(shù)改造合同3篇
- 廣東省佛山市2025屆高三高中教學(xué)質(zhì)量檢測(cè) (一)化學(xué)試題(含答案)
- 《國(guó)有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護(hù)管理方案
- 人教版【初中數(shù)學(xué)】知識(shí)點(diǎn)總結(jié)-全面+九年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教案
- 食品安全分享
- 礦山機(jī)械設(shè)備安全管理制度
- 計(jì)算機(jī)等級(jí)考試二級(jí)WPS Office高級(jí)應(yīng)用與設(shè)計(jì)試題及答案指導(dǎo)(2025年)
- 造價(jià)框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 心衰患者的個(gè)案護(hù)理
- 醫(yī)護(hù)人員禮儀培訓(xùn)
評(píng)論
0/150
提交評(píng)論