四川省峨眉山市2025年初三下學期練習(二)數(shù)學試題含解析_第1頁
四川省峨眉山市2025年初三下學期練習(二)數(shù)學試題含解析_第2頁
四川省峨眉山市2025年初三下學期練習(二)數(shù)學試題含解析_第3頁
四川省峨眉山市2025年初三下學期練習(二)數(shù)學試題含解析_第4頁
四川省峨眉山市2025年初三下學期練習(二)數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省峨眉山市2025年初三下學期練習(二)數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.122.如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.63.計算的結果等于()A.-5 B.5 C. D.4.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.5.如圖是由6個完全相同的小長方體組成的立體圖形,這個立體圖形的左視圖是()A. B.C. D.6.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③7.如圖,三棱柱ABC﹣A1B1C1的側棱長和底面邊長均為2,且側棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(左)視圖的面積為()A. B. C. D.48.已知點M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(x,y)一定在()A.拋物線上 B.過原點的直線上 C.雙曲線上 D.以上說法都不對9.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應的點是()A.點A B.點B C.點C D.點D10.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個月多賣10%,設上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=33011.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣3612.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內角和是180°D.拋一枚硬幣,落地后正面朝上二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分式與的最簡公分母是_____.14.用不等號“>”或“<”連接:sin50°_____cos50°.15.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.16.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為__________.17.如圖,已知反比例函數(shù)y=kx18.袋中裝有一個紅球和二個黃球,它們除了顏色外都相同,隨機從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機摸出一球,兩次都摸到紅球的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點為F,F(xiàn)H∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.20.(6分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.21.(6分)讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?22.(8分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標;(2)若直線EF的解析式為y=3(3)若雙曲線y=k23.(8分)解方程:.24.(10分)在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB,BC分別交于點M,N,求證:BM=CN.25.(10分)某通訊公司推出①,②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分)與費用y(元)之間的函數(shù)關系如圖所示.有月租的收費方式是________(填“①”或“②”),月租費是________元;分別求出①,②兩種收費方式中y與自變量x之間的函數(shù)表達式;請你根據(jù)用戶通訊時間的多少,給出經濟實惠的選擇建議.26.(12分)如圖,平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數(shù)的圖象交于點.求反比例函數(shù)的表達式;若點C在反比例函數(shù)的圖象上,點D在x軸上,當四邊形ABCD是平行四邊形時,求點D的坐標.27.(12分)某服裝店用4000元購進一批某品牌的文化衫若干件,很快售完,該店又用6300元錢購進第二批這種文化衫,所進的件數(shù)比第一批多40%,每件文化衫的進價比第一批每件文化衫的進價多10元,請解答下列問題:(1)求購進的第一批文化衫的件數(shù);(2)為了取信于顧客,在這兩批文化衫的銷售中,售價保持了一致.若售完這兩批文化衫服裝店的總利潤不少于4100元錢,那么服裝店銷售該品牌文化衫每件的最低售價是多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.本題結合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關鍵.2、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標,結合反比例函數(shù)圖象上點的坐標特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是找出S△AOF=12S菱形OBCA3、A【解析】

根據(jù)有理數(shù)的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.本題主要考查有理數(shù)的除法,解題的關鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.4、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數(shù)在定義域內是增函數(shù),∴一次函數(shù)y=kx?k的圖象經過第一、三、四象限;故選:B.5、B【解析】

根據(jù)題意找到從左面看得到的平面圖形即可.【詳解】這個立體圖形的左視圖是,

故選:B.本題考查了簡單組合體的三視圖,解題的關鍵是掌握左視圖所看的位置.6、D【解析】

∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.7、B【解析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側棱長,把相關數(shù)值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關鍵是得到求左視圖的面積的等量關系,難點是得到側面積的寬度.8、B【解析】

由圓周角定理得出∠MON與∠MAN的關系,從而得出x與y的關系式,進而可得出答案.【詳解】∵∠MON與∠MAN分別是弧MN所對的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(x,y)一定在過原點的直線上.故選B.本題考查了圓周角定理及正比例函數(shù)圖像的性質,熟練掌握圓周角定理是解答本題的關鍵.9、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最?。蔬xB.10、D【解析】解:設上個月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.11、B【解析】

解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.本題主要考查菱形的性質和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.12、C【解析】分析:必然事件就是一定發(fā)生的事件,依據(jù)定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3a2b【解析】

利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.本題考查最簡公分母,解題的關鍵是掌握求最簡公分母的方法.14、>【解析】試題解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案為>.點睛:當角度在0°~90°間變化時,①正弦值隨著角度的增大(或減小)而增大(或減?。虎谟嘞抑惦S著角度的增大(或減?。┒鴾p小(或增大);③正切值隨著角度的增大(或減小)而增大(或減?。?5、15【解析】

根據(jù)圓的基本性質得出四邊形OABC為菱形,∠AOB=60°,然后根據(jù)同弧所對的圓心角與圓周角之間的關系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.本題主要考查的是圓的基本性質問題,屬于基礎題型.根據(jù)題意得出四邊形OABC為菱形是解題的關鍵.16、.【解析】

連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【詳解】解:連接CD,

作DM⊥BC,DN⊥AC.

∵CA=CB,∠ACB=90°,點D為AB的中點,

∴DC=AB=1,四邊形DMCN是正方形,DM=.

則扇形FDE的面積是:.

∵CA=CB,∠ACB=90°,點D為AB的中點,

∴CD平分∠BCA,

又∵DM⊥BC,DN⊥AC,

∴DM=DN,

∵∠GDH=∠MDN=90°,

∴∠GDM=∠HDN,

則在△DMG和△DNH中,,

∴△DMG≌△DNH(AAS),

∴S四邊形DGCH=S四邊形DMCN=.

則陰影部分的面積是:.故答案為:.本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.17、34【解析】

由點B的坐標為(2,3),而點C為OB的中點,則C點坐標為(1,1.5),利用待定系數(shù)法可得到k=1.5,然后利用k的幾何意義即可得到△OAD的面積.【詳解】∵點B的坐標為(2,3),點C為OB的中點,∴C點坐標為(1,1.5),∴k=1×1.5=1.5,即反比例函數(shù)解析式為y=1.5x∴S△OAD=12×1.5=3故答案為:34本題考查了反比例函數(shù)的幾何意義,一般的,從反比例函數(shù)y=kx(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數(shù)k,以點P及點P的一個垂足和坐標原點為頂點的三角形的面積等于18、【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到紅球的有1種結果,所以兩次都摸到紅球的概率是,故答案為.此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=20、,【解析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)將除法運算化為乘法運算,約分得到最簡結果,利用-1的偶次冪為1及特殊角的三角函數(shù)值求出a的值,代入計算即可求出值.解:原式=,當,原式=.“點睛”此題考查了分式的化簡求值,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母;分式的乘除運算關鍵是約分,約分的關鍵是找公因式.21、周瑜去世的年齡為16歲.【解析】

設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.根據(jù)題意建立方程求出其值就可以求出其結論.【詳解】設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.由題意得;10(x﹣1)+x=x2,解得:x1=5,x2=6當x=5時,周瑜的年齡25歲,非而立之年,不合題意,舍去;當x=6時,周瑜年齡為16歲,完全符合題意.答:周瑜去世的年齡為16歲.本題是一道數(shù)字問題的運用題,考查了列一元二次方程解實際問題的運用,在解答中理解而立之年是一個人10歲的年齡是關鍵.22、(1)E(-3,4)、F(-5,0);(2)-334【解析】

(1)連接OE,BF,根據(jù)題意可知:BC=OA=8,BA=OC=4,設EC=x,則BE=OE=8-x,根據(jù)勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據(jù)菱形的性質得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點E(m2-n22m?,?n)、F(即可求出tan∠EFO=-m【詳解】解:(1)如圖:連接OE,BF,E(-3,4)、F(-5,0)(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE可證:△BGE≌△OGF(ASA)∴BE=OF∴四邊形OEBF為菱形令y=0,則3x+3=0,解得x=-3令y=n,則3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)設EB=EO=x,則CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中點為(m2將E(m2-n22mn(m2-n∴tan∠EFO=-考查矩形的折疊與性質,勾股定理,一次函數(shù)的圖象與性質,待定系數(shù)法求反比例函數(shù)解析式,銳角三角函數(shù)等,綜合性比較強,難度較大.23、【解析】分析:此題應先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數(shù)化為1,得.經檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.24、證明見解析.【解析】試題分析:作于點F,然后證明≌,從而求出所所以BM與CN的長度相等.試題解析:在矩形ABCD中,AD=2AB,E是AD的中點,作EF⊥BC于點F,則有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E為AB的中點,∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.25、(1)①30;(2)y1=0.1x+30,y2=0.2x;(3)當通話時間少于300分鐘時,選擇通話方式②實惠;當通話時間超過300分鐘時,選擇通話方式①實惠;當通話時間為300分鐘時,選擇通話方式①,②花費一樣.【解析】試題分析:(1)根據(jù)當通訊時間為零的時候的函數(shù)值可以得到哪種方式有月租,哪種方式沒有,有多少;(2)根據(jù)圖象經過的點的坐標設出函數(shù)的解析式,用待定系數(shù)法求函數(shù)的解析式即可;(3)求出當兩種收費方式費用相同的時候自變量的值,以此值為界說明消費方式即可.解:(1)①;30;(2)設y1=k1x+30,y2=k2x,由題意得:將(500,80),(500,100)分別代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式為y1=0.1x+30;y2=0.2x;(3)當通訊時間相同時y1=y2,得0.2x=0.1x+30,解得x=300;當x=300時,y=1.故由圖可知當通話時間在300分鐘內,選擇通話方式②實惠;當通話時間超過300分鐘時,選擇通話方式①實惠;當通話時間在300分鐘時,選擇通話方式①、②一樣實惠.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論