版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
OrganizingandVisualizingVariablesChapter2ObjectivesInthischapteryoulearn:
Methodstoorganizevariables.Methodstovisualizevariables.Methodstoorganizeorvisualizemorethanonevariableatthesametime.Principlesofpropervisualizations.CategoricalDataAreOrganizedByUtilizingTablesDCOVACategoricalDataTallyingData
SummaryTable
OneCategoricalVariable
TwoCategoricalVariablesContingencyTableOrganizingCategoricalData:SummaryTableAsummarytabletalliesthefrequenciesorpercentagesofitemsinasetofcategoriessothatyoucanseedifferencesbetweencategories.
ReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%DCOVAMainReasonYoungAdultsShopOnlineSource:Dataextractedandadaptedfrom“MainReasonYoungAdultsShopOnline?”USAToday,December5,2012,p.1A.AContingencyTableHelpsOrganizeTwoorMoreCategoricalVariablesUsedtostudypatternsthatmayexistbetweentheresponsesoftwoormorecategoricalvariablesCrosstabulatesortalliesjointlytheresponsesofthecategoricalvariablesFortwovariablesthetalliesforonevariablearelocatedintherowsandthetalliesforthesecondvariablearelocatedinthecolumnsDCOVAContingencyTable-ExampleArandomsampleof400invoicesisdrawn.Eachinvoiceiscategorizedasasmall,medium,orlargeamount.Eachinvoiceisalsoexaminedtoidentifyifthereareanyerrors.Thisdataarethenorganizedinthecontingencytabletotheright.DCOVANoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400ContingencyTableShowingFrequencyofInvoicesCategorizedBySizeandThePresenceOfErrorsContingencyTableBasedOnPercentageOfOverallTotalNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount42.50%5.00%47.50%MediumAmount25.00%10.00%35.00%LargeAmount16.25%1.25%17.50%Total83.75%16.25%100.0%42.50%=170/40025.00%=100/40016.25%=65/40083.75%ofsampledinvoiceshavenoerrorsand47.50%ofsampledinvoicesareforsmallamounts.ContingencyTableBasedOnPercentageofRowTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount89.47%10.53%100.0%MediumAmount71.43%28.57%100.0%LargeAmount92.86%7.14%100.0%Total83.75%16.25%100.0%89.47%=170/19071.43%=100/14092.86%=65/70Mediuminvoiceshavealargerchance(28.57%)ofhavingerrorsthansmall(10.53%)orlarge(7.14%)invoices.ContingencyTableBasedOnPercentageOfColumnTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%50.75%=170/33530.77%=20/65Thereisa61.54%chancethatinvoiceswitherrorsareofmediumsize.TablesUsedForOrganizing
NumericalDataDCOVANumericalDataOrderedArrayCumulativeDistributionsFrequencyDistributionsOrganizingNumericalData:
OrderedArrayAnorderedarrayisasequenceofdata,inrankorder,fromthesmallestvaluetothelargestvalue.Showsrange(minimumvaluetomaximumvalue)Mayhelpidentifyoutliers(unusualobservations)AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAOrganizingNumericalData:
FrequencyDistributionThefrequencydistributionisasummarytableinwhichthedataarearrangedintonumericallyorderedclasses.
Youmustgiveattentiontoselectingtheappropriatenumberofclassgroupingsforthetable,determiningasuitablewidthofaclassgrouping,andestablishingtheboundariesofeachclassgroupingtoavoidoverlapping.Thenumberofclassesdependsonthenumberofvaluesinthedata.Withalargernumberofvalues,typicallytherearemoreclasses.Ingeneral,afrequencydistributionshouldhaveatleast5butnomorethan15classes.Todeterminethewidthofaclassinterval,youdividetherange(Highestvalue–Lowestvalue)ofthedatabythenumberofclassgroupingsdesired.DCOVAOrganizingNumericalData:
FrequencyDistributionExampleExample:Amanufacturerofinsulationrandomlyselects20winterdaysandrecordsthedailyhightemperature24,35,17,21,24,37,26,46,58,30,32,13,12,38,41,43,44,27,53,27DCOVAOrganizingNumericalData:
FrequencyDistributionExampleSortrawdatainascendingorder:
12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58Findrange:58-12=46Selectnumberofclasses:5(usuallybetween5and15)Computeclassinterval(width):10(46/5thenroundup)Determineclassboundaries(limits):Class1:10butlessthan20Class2:20butlessthan30Class3:30butlessthan40Class4:40butlessthan50Class5:50butlessthan60Computeclassmidpoints:15,25,35,45,55Countobservations&assigntoclassesDCOVAOrganizingNumericalData:FrequencyDistributionExample
ClassMidpoints Frequency10butlessthan2015 320butlessthan3025 630butlessthan4035 540butlessthan5045 450butlessthan6055 2
Total
20Datainorderedarray:12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58DCOVAOrganizingNumericalData:Relative&PercentFrequencyDistributionExample
ClassFrequency10butlessthan203.1515%20butlessthan306.3030%30butlessthan405.2525%40butlessthan504.2020%50butlessthan602.1010%
Total
201.00100%RelativeFrequency
PercentageDCOVARelativeFrequency=Frequency/Total,e.g.0.10=2/20OrganizingNumericalData:CumulativeFrequencyDistributionExampleClass10butlessthan20 315%315%20butlessthan30 630%945%30butlessthan40 525%1470%40butlessthan50 420%1890%50butlessthan60 210%20100%Total 20100 20 100%
PercentageCumulativePercentageCumulativePercentage=CumulativeFrequency/Total*100e.g.45%=100*9/20FrequencyCumulativeFrequencyDCOVAWhyUseaFrequencyDistribution?ItcondensestherawdataintoamoreusefulformItallowsforaquickvisualinterpretationofthedataItenablesthedeterminationofthemajorcharacteristicsofthedatasetincludingwherethedataareconcentrated/clusteredDCOVAFrequencyDistributions:
SomeTipsDifferentclassboundariesmayprovidedifferentpicturesforthesamedata(especiallyforsmallerdatasets)ShiftsindataconcentrationmayshowupwhendifferentclassboundariesarechosenAsthesizeofthedatasetincreases,theimpactofalterationsintheselectionofclassboundariesisgreatlyreducedWhencomparingtwoormoregroupswithdifferentsamplesizes,youmustuseeitherarelativefrequencyorapercentagedistributionDCOVAVisualizingCategoricalDataThroughGraphicalDisplaysDCOVACategoricalDataVisualizingDataBarChartSummaryTableForOneVariableContingencyTableForTwoVariablesSideBySideBarChartPieChartParetoChartVisualizingCategoricalData:
TheBarChartThebarchartvisualizesacategoricalvariableasaseriesofbars.Thelengthofeachbarrepresentseitherthefrequencyorpercentageofvaluesforeachcategory.Eachbarisseparatedbyaspacecalledagap.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
ThePieChartThepiechartisacirclebrokenupintoslicesthatrepresentcategories.Thesizeofeachsliceofthepievariesaccordingtothepercentageineachcategory.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
TheParetoChartUsedtoportraycategoricaldataAverticalbarchart,wherecategoriesareshownindescendingorderoffrequencyAcumulativepolygonisshowninthesamegraphUsedtoseparatethe“vitalfew”fromthe“trivialmany”DCOVAVisualizingCategoricalData:
TheParetoChart(con’t)DCOVA CumulativeCause Frequency Percent PercentWarpedcardjammed 36550.41% 50.41%Cardunreadable 23432.32% 82.73%ATMmalfunctions 32 4.42% 87.15%ATMoutofcash 28 3.87% 91.02%Invalidamountrequested 23 3.18% 94.20%Wrongkeystroke 23 3.18% 97.38%Lackoffundsinaccount 19 2.62% 100.00%Total 724 100.00%Source:DataextractedfromA.Bhalla,“Don’tMisusetheParetoPrinciple,”SixSigmaForumMagazine,May2009,pp.15–18.OrderedSummaryTableForCausesOfIncompleteATMTransactionsVisualizingCategoricalData:
TheParetoChart(con’t)DCOVAThe“VitalFew”VisualizingCategoricalData:
SideBySideBarChartsThesidebysidebarchartrepresentsthedatafromacontingencytable.
DCOVAInvoiceswitherrorsaremuchmorelikelytobeofmediumsize(61.54%vs30.77%and7.69%)NoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%VisualizingNumericalDataByUsingGraphicalDisplaysNumericalDataOrderedArrayStem-and-LeafDisplayHistogramPolygonOgiveFrequencyDistributionsandCumulativeDistributionsDCOVAStem-and-LeafDisplayAsimplewaytoseehowthedataaredistributedandwhereconcentrationsofdataexistMETHOD:Separatethesorteddataseries
intoleadingdigits(thestems)and
thetrailingdigits(the
leaves)DCOVAOrganizingNumericalData:
StemandLeafDisplayAstem-and-leafdisplayorganizesdataintogroups(calledstems)sothatthevalueswithineachgroup(theleaves)branchouttotherightoneachrow.
StemLeaf1677888992001225732842AgeofCollegeStudents DayStudents NightStudentsStemLeaf1889920138323415AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAVisualizingNumericalData:
TheHistogramAverticalbarchartofthedatainafrequencydistributioniscalledahistogram.Inahistogramtherearenogapsbetweenadjacentbars.Theclassboundaries(orclassmidpoints)areshownonthehorizontalaxis.Theverticalaxisiseitherfrequency,relativefrequency,orpercentage.Theheightofthebarsrepresentthefrequency,relativefrequency,orpercentage.DCOVAVisualizingNumericalData:
TheHistogram
ClassFrequency10butlessthan203.151520butlessthan306.303030butlessthan405.252540butlessthan504.202050butlessthan602.1010
Total
201.00100RelativeFrequency
Percentage(Inapercentagehistogramtheverticalaxiswouldbedefinedtoshowthepercentageofobservationsperclass)DCOVAVisualizingNumericalData:
ThePolygonApercentagepolygonisformedbyhavingthemidpointofeachclassrepresentthedatainthatclassandthenconnectingthesequenceofmidpointsattheirrespectiveclasspercentages.Thecumulativepercentagepolygon,orogive,displaysthevariableofinterestalongtheXaxis,andthecumulativepercentagesalongtheYaxis.Usefulwhentherearetwoormoregroupstocompare.DCOVAVisualizingNumericalData:
ThePercentagePolygonDCOVAUsefulWhenComparingTwoorMoreGroupsVisualizingNumericalData:
ThePercentagePolygonDCOVAVisualizingTwoNumericalVariablesByUsingGraphicalDisplaysTwoNumericalVariablesScatterPlotTime-SeriesPlotDCOVAVisualizingTwoNumericalVariables:TheScatterPlotScatterplotsareusedfornumericaldataconsistingofpairedobservationstakenfromtwonumericalvariablesOnevariableismeasuredontheverticalaxisandtheothervariableismeasuredonthehorizontalaxisScatterplotsareusedtoexaminepossiblerelationshipsbetweentwonumericalvariablesDCOVAScatterPlotExampleVolumeperdayCostperday231252614029146331603816742170501885519560200DCOVAATime-SeriesPlotisusedtostudypatternsinthevaluesofanumericvariableovertimeTheTime-SeriesPlot:NumericvariableismeasuredontheverticalaxisandthetimeperiodismeasuredonthehorizontalaxisVisualizingTwoNumericalVariables:TheTimeSeriesPlotDCOVATimeSeriesPlotExampleYearNumberofFranchises1996431997541998601999732000822001952002107200399200495DCOVAAmultidimensionalcontingencytableisconstructedbytallyingtheresponsesofthreeormorecategoricalvariables.InExcelcreatingaPivotTabletoyieldaninteractivedisplayofthistype.WhileMinitabwillnotcreateaninteractivetable,ithasmanyspecializedstatistical&graphicalprocedures(notcoveredinthisbook)toanalyze&visualizemultidimensionaldata.OrganizingManyCategoricalVariables:TheMultidimensionalContingencyTableDCOVAUsingExcelPivotTablesToOrganize&VisualizeManyVariablesApivottable:SummarizesvariablesasamultidimensionalsummarytableAllowsinteractivechangingofthelevelofsummarizationandformattingofthevariablesAllowsyoutointeractively“slice”yourdatatosummarizesubsetsofdatathatmeetspecifiedcriteriaCanbeusedtodiscoverpossiblepatternsandrelationshipsinmultidimensionaldatathatsimplertablesandchartswouldfailtomakeapparent.DCOVAAMultidimensionalContingencyTableTalliesResponsesOfThreeorMoreCategoricalVariablesTwoDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund&RiskLevelDCOVAThreeDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund,MarketCap,&RiskLevelDataDiscoveryMethodsCanYieldInitialInsightsIntoDataDatadiscoveryaremethodsenabletheperformanceofpreliminaryanalysesbymanipulatinginteractivesummarizationsAreusedto:TakeacloserlookathistoricalorstatusdataReviewdataforunusualvaluesUncovernewpatternsindataDrill-downisperhapsthesimplestformofdatadiscoveryDCOVADrill-DownRevealsTheDataUnderlyingAHigher-LevelSummaryDCOVAResultsofdrillingdowntothedetailsaboutsmallmarketcapvaluefundswithlowrisk.SomeDataDiscoveryMethodsArePrimarilyVisualAtreemapissuchamethodAtreemapvisualizesthecomparisonoftwoormorevariablesusingthesizeandcolorofrectanglestorepresentvaluesWhenusedwithoneormorecategoricalvariablesitformsamultilevelhierarchyortreethatcanuncoverpatternsamongnumericalvariables.DCOVAAnExampleOfATreemapDCOVAAtreemapofthenumericalvariablesassets(size)and10-yearreturnpercentage(color)forgrowthandvaluefundsthathavesmallmarketcapitalizationsandlowriskTheChallengesinOrganizingandVisualizingVariablesWhenorganizingandvisualizingdataneedtobemindfulof:ThelimitsofothersabilitytoperceiveandcomprehendPresentationissuesthatcanundercuttheusefulnessofmethodsfromthischapter.ItiseasytocreatesummariesthatObscurethedataorCreatefalseimpressionsDCOVAAnExampleOfObscuringData,InformationOverloadDCOVAFalseImpressionsCanBeCreatedInManyWaysSelectivesummarizationPresentingonlypartofthedatacollectedImproperlyconstructedchartsPotentialpiechartissuesImproperlyscaledaxesAYaxisthatdoesnotbeginattheoriginorisabrokenaxismissingintermediatevaluesChartjunkDCOVAAnExampleofSelectiveSummarization,TheseTwoSummarizationsTellTotallyDifferentStoriesDCOVACompanyChangefromPriorYearCompanyYear1Year2Year3A+7.2%A-22.6%-33.2%+7.2%B+24.4%B-4.5%-41.9%+24.4%C+24.9%C-18.5%-31.5%+24.9%D+24.8%D-29.4%-48.1%+24.8%E+12.5%E-1.9%-25.3%+12.5%F+35.1%F-1.6%-37.8%+35.1%G+29.7%G+7.4%-13.6%+29.7%HowObviousIsItThatBothPieChartsSummarizeTheSameData?DCOVAWhyis
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度N企業(yè)知識產(chǎn)權(quán)合同協(xié)議書
- 2024年度版權(quán)買賣合同標的版權(quán)轉(zhuǎn)移與交易金額
- 人教版英語七年級下冊期末 Unit 10-12 單元復習
- 部編版五年級下冊語文 5《草船借箭》同步練習
- 2024雙方就餐飲連鎖企業(yè)融資協(xié)議
- 2024城市公共服務智能垃圾分類系統(tǒng)建設合同
- 2024年度建筑工程安裝合作協(xié)議
- 2024年保健品批發(fā)零售合同
- 2024年度倉儲物流外包合同
- 04年校園廣播廣告代理經(jīng)營合同
- (試卷)建甌市2024-2025學年第一學期七年級期中質(zhì)量監(jiān)測
- 《安徽省二年級上學期數(shù)學期末試卷全套》
- 2024年企業(yè)業(yè)績對賭協(xié)議模板指南
- “全民消防生命至上”主題班會教案(3篇)
- 2024年海南省高考歷史試卷(含答案解析)
- 2024年湖北武漢大學化學與分子科學學院招聘1人(實驗中心)歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 2024新能源光伏電站運行規(guī)程和檢修規(guī)程
- 24秋國家開放大學《當代中國政治制度》形考任務1-4參考答案
- “以德育心,以心育德”
- 艱辛與快樂并存-壓力與收獲同在——我的課題研究故事
- 混凝土攔擋壩的施工方案
評論
0/150
提交評論