版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖北省武漢市黃陂區(qū)2024年中考數(shù)學全真模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.計算1+2+22+23+…+22010的結(jié)果是()A.22011–1 B.22011+1C. D.2.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.33.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個4.若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)的取值范圍是()A. B. C. D.5.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.6.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.67.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠08.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x49.如圖,中,,,將繞點逆時針旋轉(zhuǎn)得到,使得,延長交于點,則線段的長為()A.4 B.5 C.6 D.710.下列運算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a3二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:x2y﹣xy2=_____.12.如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.13.方程的解為.14.點A(-2,1)在第_______象限.15.若am=5,an=6,則am+n=________.16.點A(a,3)與點B(﹣4,b)關(guān)于原點對稱,則a+b=()A.﹣1 B.4 C.﹣4 D.1三、解答題(共8題,共72分)17.(8分)為了了解某校學生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調(diào)查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所提供的信息,完成下列問題:本次調(diào)查的學生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?18.(8分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組
分數(shù)段(分)
頻數(shù)
A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數(shù)和m的值;(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.19.(8分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.20.(8分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.21.(8分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).22.(10分)如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角,求樹高AB(結(jié)果保留根號).23.(12分)如圖,在?ABCD中,點O是對角線AC、BD的交點,點E是邊CD的中點,點F在BC的延長線上,且CF=BC,求證:四邊形OCFE是平行四邊形.24.已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關(guān)鍵.2、D【解析】
解:因為AB是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點睛】本題考查圓的基本性質(zhì);垂經(jīng)定理及解直角三角形,綜合性較強,難度不大.3、C【解析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.4、D【解析】
根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關(guān)鍵是熟練運用分式有意義的條件,本題屬于基礎題型.5、C【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:A、“預”的對面是“考”,“祝”的對面是“成”,“中”的對面是“功”,故本選項錯誤;B、“預”的對面是“功”,“?!钡膶γ媸恰翱肌保爸小钡膶γ媸恰俺伞?,故本選項錯誤;C、“預”的對面是“中”,“?!钡膶γ媸恰翱肌?,“成”的對面是“功”,故本選項正確;D、“預”的對面是“中”,“祝”的對面是“成”,“考”的對面是“功”,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.6、C【解析】
利用平行四邊形的性質(zhì)得出△ADF∽△EBF,得出=,再根據(jù)勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,F(xiàn)D=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握勾股定理與相似三角形的判定與性質(zhì).7、C【解析】
分式分母不為0,所以,解得.故選:C.8、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.9、B【解析】
先利用已知證明,從而得出,求出BD的長度,最后利用求解即可.【詳解】故選:B.【點睛】本題主要考查相似三角形的判定及性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.10、A【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.【點睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關(guān)鍵是掌握相關(guān)運算法則.二、填空題(本大題共6個小題,每小題3分,共18分)11、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).12、2【解析】
設MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關(guān)于x的二次函數(shù)關(guān)系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關(guān)鍵.13、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經(jīng)檢驗,是原方程的根.14、二【解析】
根據(jù)點在第二象限的坐標特點解答即可.【詳解】∵點A的橫坐標-2<0,縱坐標1>0,∴點A在第二象限內(nèi).故答案為:二.【點睛】本題主要考查了平面直角坐標系中各個象限的點的坐標的符號特點:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15、1.【解析】
根據(jù)同底數(shù)冪乘法性質(zhì)am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數(shù)冪乘法計算,屬于簡單題,熟悉法則是解題關(guān)鍵.16、1【解析】
據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反可得a、b的值,然后再計算a+b即可.【詳解】∵點A(a,3)與點B(﹣4,b)關(guān)于原點對稱,∴a=4,b=﹣3,∴a+b=1,故選D.【點睛】考查關(guān)于原點對稱的點的坐標特征,橫坐標、縱坐標都互為相反數(shù).三、解答題(共8題,共72分)17、(1)120;(2)
;(3)答案見解析;(4)1650.【解析】
(1)依據(jù)節(jié)目B的數(shù)據(jù),即可得到調(diào)查的學生人數(shù);(2)依據(jù)A部分的百分比,即可得到A部分所占圓心角的度數(shù);(3)求得C部分的人數(shù),即可將條形統(tǒng)計圖補充完整;(4)依據(jù)喜愛《中國詩詞大會》的學生所占的百分比,即可得到該校最喜愛《中國詩詞大會》的學生數(shù)量.【詳解】,故答案為120;,故答案為;:,如圖所示:,答:該校最喜愛中國詩詞大會的學生有1650名.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合思想解答.18、(1)50,18;(2)中位數(shù)落在51﹣56分數(shù)段;(3).【解析】
(1)利用C分數(shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數(shù):50人,∴第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分數(shù)段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(shù)(率)分布表,扇形統(tǒng)計圖,中位數(shù).19、(1)證明見解析;(2)【解析】
(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.20、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質(zhì),求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質(zhì)、菱形的性質(zhì)、弧長公式等知識,準確添加輔助線、靈活應用相關(guān)知識解決問題是關(guān)鍵.21、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【點睛】解此題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學問題,把實際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.22、6+【解析】
如下圖,過點C作CF⊥AB于點F,設AB長為x,則易得AF=x-4,在Rt△ACF中利用∠的正切函數(shù)可由AF把CF表達出來,在Rt△ABE中,利用∠的正切函數(shù)可由AB把BE表達出來,這樣結(jié)合BD=CF,DE=BD-BE即可列出關(guān)于x的方程,解方程求得x的值即可得到AB的長.【詳解】解:如圖,過點C作CF⊥AB,垂足為F,設AB=x,則AF=x-4,∵在Rt△ACF中,tan∠=,∴CF==BD,同理,Rt△ABE中,BE=,∵BD-BE=DE,∴-=3,解得x=6+.答:樹高AB為(6+)米.【點睛】作出如圖所示的輔助線,利用三角函數(shù)把CF和BE分別用含x的式子
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《曾子殺豬》課件-2024年教學新選擇
- 2024年企業(yè)競爭策略:SWOT分析法的實踐探索
- 2024年白公鵝養(yǎng)殖業(yè)發(fā)展論壇:機遇與挑戰(zhàn)并存
- 2024年畜牧業(yè)經(jīng)營管理教案:實踐與啟示
- 面向2024年的教育革新:《鐵杵成針》教學課件探索
- 《寓言四則》課件的突破
- 2024年物業(yè)管理新視野:保利物業(yè)培訓手冊深度分析
- 2024年5S培訓:打造高效辦公室
- 2024年Flash培訓課件:促進跨學科交流與合作
- PFC2D技術(shù)培訓課件:2024年電力電子領域高級教程
- 企業(yè)旗桿維修合同范例
- 2025屆河南省信陽第一高級中學高二物理第一學期期末綜合測試模擬試題含解析
- 排洪渠道清淤施工方案
- 北科大巖石力學-李長洪1.2-巖石的力學性質(zhì)
- 國開(河北)2024年秋《現(xiàn)代產(chǎn)權(quán)法律制度專題》形考作業(yè)1-4答案
- 新商科“專業(yè)-產(chǎn)業(yè)雙鏈融通式”人才培養(yǎng)模式探究
- 公務員2018年國考《申論》真題卷及答案(副省級)
- 2024年基金從業(yè)資格證(含三個科目)考前必刷必練題庫500題(含真題、必會題)
- 路燈改造施工方案
- 湖北省武漢市東湖新技術(shù)開發(fā)區(qū)武漢光谷未來學校2024-2025學年八年級上學期數(shù)學期中試卷
- 3.14 絲綢之路的開通與經(jīng)營西域 課件 2024-2025學年部編版
評論
0/150
提交評論