惠安廣海中學(xué)2024年中考數(shù)學(xué)模試卷含解析_第1頁
惠安廣海中學(xué)2024年中考數(shù)學(xué)模試卷含解析_第2頁
惠安廣海中學(xué)2024年中考數(shù)學(xué)模試卷含解析_第3頁
惠安廣海中學(xué)2024年中考數(shù)學(xué)模試卷含解析_第4頁
惠安廣海中學(xué)2024年中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

惠安廣海中學(xué)2024年中考數(shù)學(xué)模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.不等式組的解集為.則的取值范圍為()A. B. C. D.2.某班為獎勵在學(xué)校運動會上取得好成績的同學(xué),計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設(shè)購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.3.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.4.某校舉行運動會,從商場購買一定數(shù)量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同.設(shè)每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.5.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.326.已知2是關(guān)于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或107.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a(chǎn)10÷a5=a5 D.(xy2)3=xy68.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π9.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應(yīng)的標號是A. B. C. D.10.下列運算正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數(shù)為___12.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.13.已知圓錐的底面半徑為3cm,側(cè)面積為15πcm2,則這個圓錐的側(cè)面展開圖的圓心角°.14.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____15.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.16.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是17.如圖,?ABCD中,對角線AC,BD相交于點O,且AC⊥BD,請你添加一個適當(dāng)?shù)臈l件________,使ABCD成為正方形.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當(dāng)圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.19.(5分)如圖,點D是AB上一點,E是AC的中點,連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.20.(8分)如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)的圖象相交于點A(4,n),與軸相交于點B.填空:n的值為,k的值為;以AB為邊作菱形ABCD,使點C在軸正半軸上,點D在第一象限,求點D的坐標;考察反比函數(shù)的圖象,當(dāng)時,請直接寫出自變量的取值范圍.21.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.22.(10分)在中,,是的角平分線,交于點.(1)求的長;(2)求的長.23.(12分)如圖,已知點A(1,a)是反比例函數(shù)y1=的圖象上一點,直線y2=﹣與反比例函數(shù)y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數(shù)的解析式;(Ⅱ)求點D坐標,并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標.24.(14分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設(shè)=,=,求向量關(guān)于、的分解式.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

求出不等式組的解集,根據(jù)已知得出關(guān)于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應(yīng)用,解此題的關(guān)鍵是能根據(jù)不等式組的解集和已知得出關(guān)于k的不等式,難度適中.2、A【解析】

根據(jù)題意設(shè)未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設(shè)購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.3、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質(zhì);2.含30度角的直角三角形;3.弧長的計算.4、B【解析】試題分析:設(shè)每個筆記本的價格為x元,根據(jù)“用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同”這一等量關(guān)系列出方程即可.考點:由實際問題抽象出分式方程5、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關(guān)鍵.6、B【解析】試題分析:∵2是關(guān)于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當(dāng)1是腰時,2是底邊,此時周長=1+1+2=2;②當(dāng)1是底邊時,2是腰,2+2<1,不能構(gòu)成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì).7、C【解析】

根據(jù)乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點睛】本題考查乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關(guān)鍵是掌握乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運算.8、A【解析】

根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點睛】本題考查的知識點是扇形面積的計算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.9、B【解析】

根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關(guān)鍵.10、D【解析】

由去括號法則:如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關(guān)鍵是掌握有關(guān)計算法則.二、填空題(共7小題,每小題3分,滿分21分)11、100°【解析】

由條件可證明△AMK≌△BKN,再結(jié)合外角的性質(zhì)可求得∠A=∠MKN,再利用三角形內(nèi)角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質(zhì)及三角形內(nèi)角和定理,利用條件證得△AMK≌△BKN是解題的關(guān)鍵.12、1【解析】

利用△ACD∽△CBD,對應(yīng)線段成比例就可以求出.【詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【點睛】本題考查了相似三角形的性質(zhì)和判定,熟練掌握相似三角形的判定方法是關(guān)鍵.13、1【解析】試題分析:根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長,再結(jié)合扇形面積即可求出圓心角的度數(shù).解:∵側(cè)面積為15πcm2,∴圓錐側(cè)面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側(cè)面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.14、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.15、(﹣7,0)【解析】

直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).【點睛】此題主要考查了二次函數(shù)與幾何變換,正確掌握平移規(guī)律是解題關(guān)鍵.16、4【解析】

當(dāng)CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當(dāng)CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.17、∠BAD=90°(不唯一)【解析】

根據(jù)正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點O,且AC⊥BD,∴四邊形ABCD是菱形,當(dāng)∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.三、解答題(共7小題,滿分69分)18、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點式y(tǒng)=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;

(2)連接OM,設(shè)點M的坐標為m,12m2-m-4.由題意知,當(dāng)四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點M的坐標為m,1由題意知,當(dāng)四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當(dāng)m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【點睛】本題考核知識點:二次函數(shù)綜合運用.解題關(guān)鍵點:熟記二次函數(shù)的性質(zhì),數(shù)形結(jié)合,由所求分析出必知條件.19、答案見解析【解析】

利用已知條件容易證明△ADE≌△CFE,得出角相等,然后利用平行線的判定可以證明FC∥AB.【詳解】解:∵E是AC的中點,∴AE=CE.在△ADE與△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,平行線的判定定理.通過全等得角相等,然后得到兩線平行時一種常用的方法,應(yīng)注意掌握運用.20、(1)3,1;(2)(4+,3);(3)或【解析】

(1)把點A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點A(4,3)代入反比例函數(shù),得到k的值為1;(2)根據(jù)坐標軸上點的坐標特征可得點B的坐標為(2,3),過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得△ABE≌△DCF,根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得點D的坐標;(3)根據(jù)反比函數(shù)的性質(zhì)即可得到當(dāng)y≥-2時,自變量x的取值范圍.【詳解】解:(1)把點A(4,n)代入一次函數(shù)y=x-3,可得n=×4-3=3;把點A(4,3)代入反比例函數(shù),可得3=,解得k=1.(2)∵一次函數(shù)y=x-3與x軸相交于點B,∴x-3=3,解得x=2,∴點B的坐標為(2,3),如圖,過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,AB=,∵四邊形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x軸,DF⊥x軸,∴∠AEB=∠DFC=93°,在△ABE與△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴點D的坐標為(4+,3).(3)當(dāng)y=-2時,-2=,解得x=-2.故當(dāng)y≥-2時,自變量x的取值范圍是x≤-2或x>3.21、(1)答案見解析;(2).【解析】試題分析:(1)連接OD,AB為⊙O的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;(2)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△ADE中可計算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可計算出BF.試題解析:(1)證明:連結(jié)OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB=∠C∴OD∥AC又DE⊥AC∴DE⊥OD∴EF是⊙O的切線.(2)∵AB是直徑∴∠ADB=90°∴∠ADC=90°即∠1+∠2=90°又∠C+∠2=90°∴∠1=∠C∴∠1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論