版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專練03幾何綜合(A卷解答題)1.如圖,從點(diǎn)O引射線OM,ON,點(diǎn)A,B分別在射線OM,ON上,點(diǎn)C為平面內(nèi)一點(diǎn),連接AC,BC,有∠ACB=∠O.(1)如圖1,若AO∥BC,求證:AC∥ON;(2)如圖2,若∠ABC=∠ABO,AC⊥OM,請(qǐng)求出∠CBD和∠O的度數(shù)的等量關(guān)系式;(3)在(2)的條件下,過(guò)點(diǎn)C作CD∥OM交射線ON于點(diǎn)D.當(dāng)∠CDN=8∠CBD時(shí),求∠ABC的度數(shù).2.如圖,在△CAE中,∠CAE=90°,過(guò)點(diǎn)A作AF⊥CE于點(diǎn)F,延長(zhǎng)AF至點(diǎn)D,使AD=CE,過(guò)點(diǎn)D作AE的垂線,垂足為點(diǎn)B.(1)求證:△CAE≌△ABD;(2)若E為AB的中點(diǎn),AC=2:①求AF的長(zhǎng);②連接BF,求BF的長(zhǎng).3.如圖,已知MN//BF,AB//DE,AC//DF,點(diǎn)E在點(diǎn)C右側(cè).(1)如圖1,求證:∠ABC=∠ADE;(2)如圖2,點(diǎn)G是DE上一點(diǎn),連接AG,已知AC⊥BF,AG⊥DE.①若AD=EG,且DE=7,AG=3,求線段DG的長(zhǎng);②若AD=20,點(diǎn)E到AD的距離與線段AG的長(zhǎng)度之比為5:4,求線段DE的長(zhǎng).4.已知,△ABC和△DCE都是等邊三角形,點(diǎn)B,C,E三點(diǎn)不在一條直線上(如圖1).(1)求證:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的長(zhǎng);(3)若點(diǎn)B,C,E三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為3和5,求AD的長(zhǎng).5.如圖1,是正方形邊上一點(diǎn),過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn).(1)求證:;(2)如圖2,若正方形邊長(zhǎng)為6,線段上有一動(dòng)點(diǎn)從點(diǎn)出發(fā),以1個(gè)單位長(zhǎng)度每秒沿向運(yùn)動(dòng).同時(shí)線段上另一動(dòng)點(diǎn)從點(diǎn)出發(fā),以2個(gè)單位長(zhǎng)度每秒沿向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)后點(diǎn)也停止運(yùn)動(dòng).連接,點(diǎn)的運(yùn)動(dòng)時(shí)間為,的面積為,求關(guān)于的函數(shù)關(guān)系式;(3)如圖3,連接,連接交于點(diǎn),連接并延長(zhǎng),交于點(diǎn),已知,,求的長(zhǎng).6.如圖,在△ABC中,延長(zhǎng)AC至點(diǎn)D,使CD=AC,過(guò)點(diǎn)D作DE∥AB交BC的延長(zhǎng)線于點(diǎn)E,延長(zhǎng)DE至點(diǎn)F,使EF=DE.連接AF.(1)求證:DE=AB;(2)求證:AF∥BE;(3)當(dāng)AC=BC時(shí),連接AE,求證:AE2+DE2=AD2.7.[閱讀理解]如圖,在△ABC中,AB=4,AC=6,BC=7,過(guò)點(diǎn)A作直線BC的垂線,垂足為D,求線段AD的長(zhǎng).解:設(shè)BD=x,則CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知識(shí)遷移](1)在△ABC中,AB=13,AC=15,過(guò)點(diǎn)A作直線BC的垂線,垂足為D.i)如圖1,若BC=14,求線段AD的長(zhǎng);ii)若AD=12,求線段BC的長(zhǎng).(2)如圖2,在△ABC中,AB=,AC=,過(guò)點(diǎn)A作直線BC的垂線,交線段BC于點(diǎn)D,將△ABD沿直線AB翻折后得到對(duì)應(yīng)的△,連接CD′,若AD=,求線段的長(zhǎng).8.如圖,在△ABC中,∠ABC的角平分線與外角∠ACD的角平分線相交于點(diǎn)E.(1)設(shè)∠A=α,用含α的代數(shù)式表示∠E的度數(shù);(2)若EC∥AB,AC=4,求線段CE的長(zhǎng);(3)在(2)的條件下,過(guò)點(diǎn)C作∠ACB的角平分線交BE于點(diǎn)F,若CF=3,求邊AB的長(zhǎng).9.如圖,四邊形中,,,點(diǎn)是的中點(diǎn),連接,將沿折疊后得到,且點(diǎn)在四邊形內(nèi)部,延長(zhǎng)交于點(diǎn),連接.(1)求證:;(2)求證:;(3)若點(diǎn)是的中點(diǎn),,求的長(zhǎng).10.如圖,直線,直線交直線于點(diǎn),交直線于點(diǎn),點(diǎn)分別在直線,上,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),有,連接.(1)求證:;(2)是直線,上的兩點(diǎn),連接,過(guò)點(diǎn)作于點(diǎn).若,且.①求線段和的長(zhǎng);②求線段的長(zhǎng).11.在中,,,點(diǎn)D.F是線段AB上兩點(diǎn),連結(jié)CD,過(guò)A作于點(diǎn)E,過(guò)點(diǎn)F作于點(diǎn)M.(1)如圖1,若點(diǎn)E是CD的中點(diǎn),求的大??;(2)如圖2,若點(diǎn)D是線段BF的中點(diǎn),求證:;(3)如圖3,若點(diǎn)F是線段AB的中點(diǎn),,,求FM的值.12.如圖,直線l1∥l2,直線l3交直線l1于點(diǎn)B,交直線l2于點(diǎn)D,O是線段BD的中點(diǎn).過(guò)點(diǎn)B作BA⊥l2于點(diǎn)A,過(guò)點(diǎn)D作DC⊥l1于點(diǎn)C,E是線段BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),點(diǎn)E關(guān)于直線AB,AD的對(duì)稱點(diǎn)分別為P,Q,射線PO與射線QD相交于點(diǎn)N,連接PQ.(1)求證:點(diǎn)A是PQ的中點(diǎn);(2)請(qǐng)判斷線段QN與線段BD是否相等,并說(shuō)明理由.13.在等腰△ABC與等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)D、E、C三點(diǎn)在同一條直線上,連接BD.(1)如圖1,求證:△ADB≌△AEC(2)如圖2,當(dāng)∠BAC=∠DAE=90°時(shí),試猜想線段AD,BD,CD之間的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;(3)如圖3,當(dāng)∠BAC=∠DAE=120°時(shí),請(qǐng)直接寫(xiě)出線段AD,BD,CD之間的數(shù)量關(guān)系式為:(不寫(xiě)證明過(guò)程)14.如圖,在△ABC中,∠ABC15°,AB,BC2,以AB為直角邊向外作等腰直角△BAD,且∠BAD=90°;以BC為斜邊向外作等腰直角△BEC,連接DE.(1)按要求補(bǔ)全圖形;(2)求DE長(zhǎng);(3)直接寫(xiě)出△ABC的面積.15.我們定義:對(duì)角線互相垂直的四邊形叫做垂美四邊形.(1)如圖1,垂美四邊形ABCD的對(duì)角線AC,BD交于O.求證:AB2+CD2=AD2+BC2;(2)如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)BE,CG,GE.①求證:四邊形BCGE是垂美四邊形;②若AC=4,AB=5,求GE的長(zhǎng).16.如圖1,已知矩形ABCD,連接AC,將△ABC沿AC所在直線翻折,得到△AEC,AE交CD于點(diǎn)F.(1)求證:DF=EF;(2)如圖2,若∠BAC=30°,點(diǎn)G是AC的中點(diǎn),連接DE,EG,求證:四邊形ADEG是菱形.17.圖1,在正方形中,,為線段上一點(diǎn),連接,過(guò)點(diǎn)作,交于點(diǎn).將沿所在直線對(duì)折得到,延長(zhǎng)交于點(diǎn).(1)求證:.(2)若,求的長(zhǎng).(3)如圖2,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),若,記的面積為,求與之間的函數(shù)關(guān)系式.18.在△ABC中,AB=13,AC=5,BC邊上的中線AD=6,點(diǎn)E在AD的延長(zhǎng)線上,且ED=AD.(1)求證:BE∥AC;(2)求∠CAD的大??;(3)求點(diǎn)A到BC的距離.專練03幾何綜合(A卷解答題)1.如圖,從點(diǎn)O引射線OM,ON,點(diǎn)A,B分別在射線OM,ON上,點(diǎn)C為平面內(nèi)一點(diǎn),連接AC,BC,有∠ACB=∠O.(1)如圖1,若AO∥BC,求證:AC∥ON;(2)如圖2,若∠ABC=∠ABO,AC⊥OM,請(qǐng)求出∠CBD和∠O的度數(shù)的等量關(guān)系式;(3)在(2)的條件下,過(guò)點(diǎn)C作CD∥OM交射線ON于點(diǎn)D.當(dāng)∠CDN=8∠CBD時(shí),求∠ABC的度數(shù).【答案】(1)答案見(jiàn)解析(2)∠CBD+2∠O=90°,理由見(jiàn)解析(3)【詳解】(1)證明:∵AO∥BC,∴∠OAB=∠CBA,在△OAB和△CBA中,,∴△OAB≌△CBA(AAS),∴∠ABO=∠BAC,∴AC∥ON;(2)解:∠CBD+2∠O=90°,理由如下:在△AOB和△ACB中,,∴△AOB≌△ACB(AAS),∴∠OAB=∠CAB,∵AC⊥OM,∴∠OAC=90°,∴∠OAB=∠CAB=45°,∴∠ABC=∠ABD+∠CBD=∠ABO=180°﹣45°﹣∠O=135°﹣∠O,即∠ABD+∠CBD=135°﹣∠O,∵∠ABD=∠O+∠OAB=∠O+45°,∴∠O+45°+∠CBD=135°﹣∠O,∴∠CBD+2∠O=90°;(3)解:∵∠CDN=∠CBD+∠BCD,∠CDN=8∠CBD,∴∠BCD=7∠CBD=∠BCA+∠ACD=∠O+∠ACD,∵CD∥OM,∴∠ACD=∠OAC=90°,∴7∠CBD=∠O+90°,由(2)得,7×(90°﹣2∠O)=∠O+90°,∴∠O=36°,∴∠ABC=135°﹣∠O=99°.2.如圖,在△CAE中,∠CAE=90°,過(guò)點(diǎn)A作AF⊥CE于點(diǎn)F,延長(zhǎng)AF至點(diǎn)D,使AD=CE,過(guò)點(diǎn)D作AE的垂線,垂足為點(diǎn)B.(1)求證:△CAE≌△ABD;(2)若E為AB的中點(diǎn),AC=2:①求AF的長(zhǎng);②連接BF,求BF的長(zhǎng).【答案】(1)見(jiàn)解析(2)①;②【解析】(1)證明:∵AF⊥CE于點(diǎn)F,BD⊥AB于點(diǎn)B,∴∠AFC=90°,∠B=90°,∵∠CAE=90°,∴∠CAE=∠B,∵∠C+∠CAF=90°,∠BAD+∠CAF=90°,∴∠C=∠BAD,在△CAE和△ABD中,,∴△CAE≌△ABD(AAS).(2)解:①如圖2,∵AC=AB=2,E為AB的中點(diǎn),∴AE=BE=AB=1,∴CE===,∵S△CAE=CE?AF=AC?AE,∴×AF=×2×1,∴AF=,∴AF的長(zhǎng)為.②如圖2,作BG⊥BF交AD的延長(zhǎng)線于點(diǎn)G,則∠FBG=90°,∴∠EBF=∠DBG=90°﹣∠DBE,∵∠BEF+∠AEC=180°,∠BDG+∠BDA=180°,且∠AEC=∠BDA,∴∠BEF=∠BDG,∵AE=BE,AE=BD,∴BE=BD,在△BEF和△BDG中,,∴△BEF≌△BDG(ASA),∴BF=BG,EF=DG,∵∠AFE=90°,∴EF===,∴DG=,∵AD=CE=,∴DF=AD﹣AF=﹣=,∴FG=DF+DG=+=,∵BF2+BG2=FG2,∴2BF2=()2,∴BF=,∴BF的長(zhǎng)為.3.如圖,已知MN//BF,AB//DE,AC//DF,點(diǎn)E在點(diǎn)C右側(cè).(1)如圖1,求證:∠ABC=∠ADE;(2)如圖2,點(diǎn)G是DE上一點(diǎn),連接AG,已知AC⊥BF,AG⊥DE.①若AD=EG,且DE=7,AG=3,求線段DG的長(zhǎng);②若AD=20,點(diǎn)E到AD的距離與線段AG的長(zhǎng)度之比為5:4,求線段DE的長(zhǎng).【答案】(1)見(jiàn)解析(2)25【解析】(1)證明∵AB∥DE,∴∠ABC=∠DEF,∵M(jìn)N∥BF,∴∠ADE=∠DEF,∴∠ABC=∠ADE;(2)解:連接AE,如圖所示:①由題知AG⊥DE,AD=EG,DE=7,設(shè)AD長(zhǎng)為x,則DG長(zhǎng)為7-x,在直角三角形中,由勾股定理可得:AD2=AG2+DG2即,解得,∴②∵AC⊥BF,∴點(diǎn)E到AD的距離為AC的長(zhǎng),由題知AG⊥DE,在中,由三角形面積相等得:AD×AC=DE×AG,∵,∴,∵AD=20,∴DE=25.4.已知,△ABC和△DCE都是等邊三角形,點(diǎn)B,C,E三點(diǎn)不在一條直線上(如圖1).(1)求證:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的長(zhǎng);(3)若點(diǎn)B,C,E三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為3和5,求AD的長(zhǎng).【答案】(1)見(jiàn)解析(2)BD=;(3)AD=.【詳解】(1)證明:∵△ABC和△DCE是等邊三角形,∴BC=AC,DC=EC,∠ACB=∠DCE=60°,∴∠ABC+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD與△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)解:∵△DCE等式等邊三角形,∴∠CDE=60°,CD=DE=5,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=4,DE=5,∴AE=,∴BD=;(3)解:如圖2,過(guò)A作AH⊥CD于H,∵點(diǎn)B,C,E三點(diǎn)在一條直線上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等邊三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,∴∠CAH=30°,在Rt△ACH中,CH=AC=,由勾股定理得AH=,∴DH=CD-CH=5-,在Rt△ADH中,AD==.5.如圖1,是正方形邊上一點(diǎn),過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn).(1)求證:;(2)如圖2,若正方形邊長(zhǎng)為6,線段上有一動(dòng)點(diǎn)從點(diǎn)出發(fā),以1個(gè)單位長(zhǎng)度每秒沿向運(yùn)動(dòng).同時(shí)線段上另一動(dòng)點(diǎn)從點(diǎn)出發(fā),以2個(gè)單位長(zhǎng)度每秒沿向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)后點(diǎn)也停止運(yùn)動(dòng).連接,點(diǎn)的運(yùn)動(dòng)時(shí)間為,的面積為,求關(guān)于的函數(shù)關(guān)系式;(3)如圖3,連接,連接交于點(diǎn),連接并延長(zhǎng),交于點(diǎn),已知,,求的長(zhǎng).【答案】(1)見(jiàn)解析(2)(3)【解析】(1)解:∵四邊形為正方形,,即在和中,.(2)由題意,,,(3)作交于,連接∵四邊形是正方形,,,.,,,,在和中,,,,垂直平分,
設(shè),則,,∵在中,,,6.如圖,在△ABC中,延長(zhǎng)AC至點(diǎn)D,使CD=AC,過(guò)點(diǎn)D作DE∥AB交BC的延長(zhǎng)線于點(diǎn)E,延長(zhǎng)DE至點(diǎn)F,使EF=DE.連接AF.(1)求證:DE=AB;(2)求證:AF∥BE;(3)當(dāng)AC=BC時(shí),連接AE,求證:AE2+DE2=AD2.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析.【詳解】證明:(1)∵DE∥AB,∴∠ABC=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴DE=AB;(2)∵DC=AC,DE=EF,∴CE是△DAF的中位線,∴AF∥BE;(3)∵△ABC≌△DEC,∴BC=CE,∵AC=BC,∴AC=BC=CE,∴△BAE是直角三角形,∴AB2+AE2=BE2,∵AB=DE,AD=2AC=2BC=BE,∴AE2+DE2=AD2.7.[閱讀理解]如圖,在△ABC中,AB=4,AC=6,BC=7,過(guò)點(diǎn)A作直線BC的垂線,垂足為D,求線段AD的長(zhǎng).解:設(shè)BD=x,則CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知識(shí)遷移](1)在△ABC中,AB=13,AC=15,過(guò)點(diǎn)A作直線BC的垂線,垂足為D.i)如圖1,若BC=14,求線段AD的長(zhǎng);ii)若AD=12,求線段BC的長(zhǎng).(2)如圖2,在△ABC中,AB=,AC=,過(guò)點(diǎn)A作直線BC的垂線,交線段BC于點(diǎn)D,將△ABD沿直線AB翻折后得到對(duì)應(yīng)的△,連接CD′,若AD=,求線段的長(zhǎng).【答案】(1)i)12;ii)14或4;(2)【詳解】(1)i)解:設(shè)BD=x,則CD=14-x,∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=13,AC=15,∴132﹣x2=152﹣(14﹣x)2.解得:x=5,∴BD=5,∴AD==;ii)分兩種情況:①當(dāng)點(diǎn)D在線段BC上,如圖,∵AD=12,AB=13,AC=15,AD⊥BC,∴BD=,DC=,∴BC=BD+DC=5+9=14,②當(dāng)點(diǎn)D在CB的延長(zhǎng)線上,如圖,則BC=DC-BD=9-5=4;(2)∵AB=,AC=,AD=,AD⊥BC,∴BD=,DC=,過(guò)點(diǎn)D′作D′F⊥BC,交CB的延長(zhǎng)線于點(diǎn)F,∵將△ABD沿直線AB翻折后得到對(duì)應(yīng)的△,∴BD′=BD=,設(shè)BF=x,D′F=y,則x2+y2=()2,又∵,即:4x+2y=25,∴x=或(舍),∴y=5,即:D′F=5,∴CF=BF+BD+CD=++5=15,∴=.8.如圖,在△ABC中,∠ABC的角平分線與外角∠ACD的角平分線相交于點(diǎn)E.(1)設(shè)∠A=α,用含α的代數(shù)式表示∠E的度數(shù);(2)若EC∥AB,AC=4,求線段CE的長(zhǎng);(3)在(2)的條件下,過(guò)點(diǎn)C作∠ACB的角平分線交BE于點(diǎn)F,若CF=3,求邊AB的長(zhǎng).【答案】(1);(2)4;(3)【詳解】解:(1)設(shè)∠ABE=∠CBE=x,∠ACE=∠ECD=y(tǒng),則有,可得∠E=∠A=α.(2)∵EC∥AB,∴∠ABE=∠E,∵∠ABC=2∠ABE,∠A=2∠E,∴∠A=∠ABC,∠E=∠CBE,∴CA=CB=4,CE=CB=4.(3)如圖,連接AF,過(guò)點(diǎn)C作CT⊥BE于T,延長(zhǎng)CF交AB于R.∵CF平分∠ACB,CE平分∠ACD,∴∠FCE=(∠ACB+∠ACD)=90°,∵CF=3,CE=4,∴EF===5,∵S△CEF=?EC?CF=?EF?CT,∴CT=,在Rt△BCT中,BT===,∵CB=CE,CT⊥BE,∴BT=TE,∴BE=2BT=,∴BF=BE﹣EF=﹣5=,∵CA=CB,CF平分∠ACB,∴CR⊥AB,BR=AR,設(shè)BR=x,RF=y(tǒng),則有,解得(不符合題意的解已經(jīng)舍棄).∴AB=2BR=.9.如圖,四邊形中,,,點(diǎn)是的中點(diǎn),連接,將沿折疊后得到,且點(diǎn)在四邊形內(nèi)部,延長(zhǎng)交于點(diǎn),連接.(1)求證:;(2)求證:;(3)若點(diǎn)是的中點(diǎn),,求的長(zhǎng).【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)【詳解】解:(1)∵E是AD中點(diǎn),∴AE=DE,由折疊可知:AE=EG,∠EGB=∠EGF=∠D=∠A=90°,∴EG=ED,又EF=EF,∴Rt△EGF≌Rt△EOF(HL);(2)△ABE折疊得到△GBE,∴AB=BG,∵AD∥BC,∠A=∠D=90°,∴∠ABC=90°,∠C=90°,∴四邊形ABCD為矩形,∴AB=DC,∴BG=CD;(3)∵點(diǎn)E是AD中點(diǎn),AD=BC=8,∴AE=DE=4,∵點(diǎn)F是CD中點(diǎn),∴設(shè)CD=x,則DF=x,則BE2=BG2+EG2,即BE2=CD2+AE2,即BE2=x2+42,且EF2=DE2+DF2,即EF2=42+(x)2,且BF2=BC2+CF2,即BF2=82+(x)2,∵∠AEB=∠GEB,∠DEF=∠GEF,∴∠BEF=∠GEB+∠GEF=90°,∴BF2=BE2+EF2,∴82+(x)2=x2+42+42+(x)2,解得:x=,即CD=.10.如圖,直線,直線交直線于點(diǎn),交直線于點(diǎn),點(diǎn)分別在直線,上,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),有,連接.(1)求證:;(2)是直線,上的兩點(diǎn),連接,過(guò)點(diǎn)作于點(diǎn).若,且.①求線段和的長(zhǎng);②求線段的長(zhǎng).【答案】(1)見(jiàn)解析;(2)①;②【詳解】解:(1)如圖所示:∵直線l1//l2,∴∠BAC=∠ABD,∵CE⊥l3,∴∠AEC=90°∵DF⊥l3,∴∠BFD=90°∴∠AEC=∠BFD又∵CE=DF∴△AEC?△BFD(AAS)∴AC=BD又∵AB=BA,∴△ACB?△BDA(SAS)∴BC=AD,∠ABC=∠BAD∴AD//BC(2)①設(shè)CM=x,則CE=CM=x,AC=2?x∵CM=CE,BC=BC,∠BMC=∠BEC=90°∴Rt△BMC?Rt△BEC,∴BE=BM=在Rt△BMA中,AB=,∴AE==1在Rt△AEC中,AE2+CE2=AC2即12+x2=(2?x)2解得x=即CE=CM=,AC=②過(guò)點(diǎn)D作DH⊥l1于點(diǎn)H,則有∠DHA=90°=∠BMC∵AD//BC,∴∠DAH=∠BCM又∵AD=CB∴△DAH?△BCM,∴AH=CM=,DH=BM=∴CH=AC?AH=過(guò)點(diǎn)P作PN⊥l2于點(diǎn)N,易得PN=BM=DH,∠DHC=∠PNQ=90°∵l1//l2,PQ//CD,∴∠DCH=∠PQN∴△DHC?△PNQ∴NQ=HC=在△PBQ中,∵PQ=BP,PN⊥BQ,∴NQ=BN=∴BQ=111.在中,,,點(diǎn)D.F是線段AB上兩點(diǎn),連結(jié)CD,過(guò)A作于點(diǎn)E,過(guò)點(diǎn)F作于點(diǎn)M.(1)如圖1,若點(diǎn)E是CD的中點(diǎn),求的大??;(2)如圖2,若點(diǎn)D是線段BF的中點(diǎn),求證:;(3)如圖3,若點(diǎn)F是線段AB的中點(diǎn),,,求FM的值.【答案】(1)∠CAE=22.5°;(2)見(jiàn)解析;(3)FM=.【詳解】(1)解:如圖中,∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∵AE⊥CD,EC=ED,∴AC=AD,∴∠CAE=∠DAE=22.5°,∴∠CAE=22.5°;(2)證明:過(guò)點(diǎn)B作BN⊥CD交CD的延長(zhǎng)線于點(diǎn)N.
∴∠BNC=90°,∵AE⊥CD,∴∠CEA=∠BNC=90°,∴∠CAE+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCN=90°,∴∠CAE=∠BCN,在△AEC和△CNB中,,∴△AEC≌△CNB,∴CE=BN,∵FM⊥CD,BN⊥CD,∴∠FMD=∠BND=90°,∵若點(diǎn)D是線段BF的中點(diǎn),∴FD=BD,在△FMD和△BND中,,∴△FMD≌△BND,∴FM=BN,∴CE=FM;(3)如圖中,在線段AE上取點(diǎn)G,使得AG=CE,連結(jié)CF、EF,∵AF=FB,AC=BC,∠ACB=90°,∴CF⊥AB,CF=AF,∵∠FAG+∠ADE=90°,∠ADE+∠FCE=90°,∴∠GAF=∠ECF,∵AG=CE,∴△AGF≌△CEF,∴FG=EF,∠AFG=∠CFE,∴∠EFG=∠AFC=90°,∴△EFG是等腰直角三角形,∴EG=EF,∠GEF=45°,∴∠MEF=90°-45°=45°,∴△EFM是等腰直角三角形,∴EF=FM,∴AE-CE=AE-AG=EG=EF=2FM,即2FM,∴FM=.12.如圖,直線l1∥l2,直線l3交直線l1于點(diǎn)B,交直線l2于點(diǎn)D,O是線段BD的中點(diǎn).過(guò)點(diǎn)B作BA⊥l2于點(diǎn)A,過(guò)點(diǎn)D作DC⊥l1于點(diǎn)C,E是線段BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),點(diǎn)E關(guān)于直線AB,AD的對(duì)稱點(diǎn)分別為P,Q,射線PO與射線QD相交于點(diǎn)N,連接PQ.(1)求證:點(diǎn)A是PQ的中點(diǎn);(2)請(qǐng)判斷線段QN與線段BD是否相等,并說(shuō)明理由.【答案】(1)見(jiàn)解析;(2)相等,理由見(jiàn)解析【詳解】解:(1)連接AE,PE,QE,如圖∵點(diǎn)E關(guān)于直線AB,AD的對(duì)稱點(diǎn)分別為P,Q∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ∵AB⊥l2,∴∠2+∠3=90°∴∠1+∠2+∠3+∠4=180°∴P,A,Q三點(diǎn)在同一條直線上∴點(diǎn)A是PQ的中點(diǎn).(2)QN=BD,理由如下:連接PB∵點(diǎn)E關(guān)于直線AB,AD的對(duì)稱點(diǎn)分別為P,Q∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8∵l1//l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10又∵AB⊥l2,DC⊥l2,∴AB//CD∴∠6=∠9,∴∠5+∠6=∠9+∠10即∠OBP=∠ODN∵O是線段BD的中點(diǎn),∴OB=OD在△BOP和△DON中∴△BOP≌△DON∴BP=DN,∴BE=DN∴QN=DQ+DN=DE+BE=BD13.在等腰△ABC與等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)D、E、C三點(diǎn)在同一條直線上,連接BD.(1)如圖1,求證:△ADB≌△AEC(2)如圖2,當(dāng)∠BAC=∠DAE=90°時(shí),試猜想線段AD,BD,CD之間的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;(3)如圖3,當(dāng)∠BAC=∠DAE=120°時(shí),請(qǐng)直接寫(xiě)出線段AD,BD,CD之間的數(shù)量關(guān)系式為:(不寫(xiě)證明過(guò)程)【答案】(1)見(jiàn)解析;(2)CD=AD+BD,理由見(jiàn)解析;(3)CD=AD+BD【詳解】證明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=AD,∵CD=DE+CE,∴CD=AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=AD,∴DH==AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD=AD+BD,故答案為:CD=AD+BD.14.如圖,在△ABC中,∠ABC15°,AB,BC2,以AB為直角邊向外作等腰直角△BAD,且∠BAD=90°;以BC為斜邊向外作等腰直角△BEC,連接DE.(1)按要求補(bǔ)全圖形;(2)求DE長(zhǎng);(3)直接寫(xiě)出△ABC的面積.【答案】(1)見(jiàn)解析;(2);(3)【詳解】解:(1)如圖所示(2)連接DC
解:∵△ABD是等腰直角三角形,
AB=,∠BAD=90°.
∴AB=AD=,∠ABD=45°.
由勾股定理得DB=2.
∴∠DBC=∠ABC+∠ABD=60°.
∵BC=2.
∴BC=BD.
∴△BCD是等邊三角形.
∴BD=CD=2.
∴D點(diǎn)在線段BC的垂直平分線上.
又∵△BEC是等腰直角三角形.
∴BE=CE,∠CEB=45°
∴E點(diǎn)在線段BC的垂直平分線上.
∴DE垂直平分BC.
∴BF=BC=1,
∠BFE=90°
∵∠FBE=∠BEF=45°
∴BF=EF=1
Rt△BFD中,BF=1,BD=2由勾股定理得DF=,
∴DE=DF+EF=.(3)∵AD=AB,DC=BC,AC=AC,∴△ABC≌△DAC.用△DBC的面積減去△ABD的面積除以2即可得到△ABC的面積.△DBC的面積為=,△ABD的面積為.所以△ABC的面積為.15.我們定義:對(duì)角線互相垂直的四邊形叫做垂美四邊形.(1)如圖1,垂美四邊形ABCD的對(duì)角線AC,BD交于O.求證:AB2+CD2=AD2+BC2;(2)如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)BE,CG,GE.①求證:四邊形BCGE是垂美四邊形;②若AC=4,AB=5,求GE的長(zhǎng).【答案】(1)見(jiàn)解析;(2)①見(jiàn)解析;②GE=【詳解】(1)證明:∵垂美四邊形ABCD的對(duì)角線AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①證明:連接BG、CE相交于點(diǎn)N,CE交AB于點(diǎn)M,如圖2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB51T 675-2018 青貯玉米栽培技術(shù)規(guī)程
- 石棉投資規(guī)劃項(xiàng)目建議書(shū)
- 拋光機(jī)投資規(guī)劃項(xiàng)目建議書(shū)
- 電阻焊機(jī)項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 新建輸出齒輪項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 玻璃陶瓷包裝制品生產(chǎn)加工項(xiàng)目可行性研究報(bào)告
- 2024-2030年新版中國(guó)可塑劑項(xiàng)目可行性研究報(bào)告
- 2024-2030年撰寫(xiě):中國(guó)食品紙盒印字機(jī)行業(yè)發(fā)展趨勢(shì)及競(jìng)爭(zhēng)調(diào)研分析報(bào)告
- 2024-2030年撰寫(xiě):中國(guó)冰激凌機(jī)行業(yè)發(fā)展趨勢(shì)及競(jìng)爭(zhēng)調(diào)研分析報(bào)告
- 2024-2030年屋頂軸流風(fēng)機(jī)公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 報(bào)價(jià)單報(bào)價(jià)單
- 面試評(píng)估表及評(píng)分標(biāo)準(zhǔn)及面試評(píng)估表及評(píng)估標(biāo)準(zhǔn)
- 消防安全重點(diǎn)單位規(guī)范化管理手冊(cè)
- 【拓展閱讀】類文閱讀《王羲之吃墨》
- 熱電廠機(jī)組A級(jí)檢修策劃書(shū)
- 浙教版數(shù)學(xué)八年級(jí)下冊(cè)全冊(cè)優(yōu)質(zhì)課件
- 第三講:蘇聯(lián)模式興衰
- GB/T 5623-2008產(chǎn)品電耗定額制定和管理導(dǎo)則
- GB/T 41002-2022兒童箱包通用技術(shù)規(guī)范
- 光學(xué)5(光的偏振)
- GB/T 20833-2007旋轉(zhuǎn)電機(jī)定子線棒及繞組局部放電的測(cè)量方法及評(píng)定導(dǎo)則
評(píng)論
0/150
提交評(píng)論