




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京溧水區(qū)四校聯(lián)考2023-2024學年中考數(shù)學考前最后一卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.12.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.3.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確4.計算6m6÷(-2m2)3的結果為()A. B. C. D.5.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里6.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關系式為().A. B. C. D.7.已知,則的值為A. B. C. D.8.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(
)A. B. C. D.9.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.1010.下列方程中有實數(shù)解的是()A.x4+16=0 B.x2﹣x+1=0C. D.11.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:912.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.方程的解為__________.14.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.15.中,,,高,則的周長為______。16.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結EF.(1)線段BE與AF的位置關系是,=.(2)如圖2,當△CEF繞點C順時針旋轉a時(0°<a<180°),連結AF,BE,(1)中的結論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當△CEF繞點C順時針旋轉a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉角a的度數(shù).17.在平面直角坐標系xOy中,點A(4,3)為⊙O上一點,B為⊙O內(nèi)一點,請寫出一個符合條件要求的點B的坐標______.18.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉,旋轉角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形20.(6分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?21.(6分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.22.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.23.(8分)解不等式組:,并將它的解集在數(shù)軸上表示出來.24.(10分)先化簡,再求值:,其中.25.(10分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.26.(12分)如圖,點E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.27.(12分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設計出最省錢的購買方案,并說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據(jù)圓的知識得出點P的運動軌跡.2、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.3、A【解析】
根據(jù)題意先畫出相應的圖形,然后進行推理論證即可得出結論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規(guī)作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關鍵.4、D【解析】分析:根據(jù)冪的乘方計算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎題型.明白冪的計算法則是解決這個問題的關鍵.5、D【解析】
根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.6、A【解析】
根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.7、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.8、D【解析】
一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結果,其中摸出白球的所有等可能結果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.9、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.10、C【解析】
A、B是一元二次方程可以根據(jù)其判別式判斷其根的情況;C是無理方程,容易看出沒有實數(shù)根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數(shù)根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數(shù)根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數(shù)根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數(shù)的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.11、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.12、D【解析】
∵A(,),B(2,)兩點在雙曲線上,∴根據(jù)點在曲線上,點的坐標滿足方程的關系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.14、【解析】
如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應用、射影定理等幾何知識點為核心構造而成;對綜合的分析問題解決問題的能力提出了一定的要求.15、32或42【解析】
根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進行計算,是解題的關鍵.16、(1)互相垂直;;(2)結論仍然成立,證明見解析;(3)135°.【解析】
(1)結合已知角度以及利用銳角三角函數(shù)關系求出AB的長,進而得出答案;
(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;
(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵點E,F(xiàn)分別是線段BC,AC的中點,
∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,
∴EC=BC,F(xiàn)C=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延長BE交AC于點O,交AF于點M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.17、(2,2).【解析】
連結OA,根據(jù)勾股定理可求OA,再根據(jù)點與圓的位置關系可得一個符合要求的點B的坐標.【詳解】如圖,連結OA,OA==5,∵B為⊙O內(nèi)一點,∴符合要求的點B的坐標(2,2)答案不唯一.故答案為:(2,2).【點睛】考查了點與圓的位置關系,坐標與圖形性質(zhì),關鍵是根據(jù)勾股定理得到OA的長.18、.【解析】
連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【詳解】解:連接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴DC=AB=1,四邊形DMCN是正方形,DM=.
則扇形FDE的面積是:.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
則在△DMG和△DNH中,,
∴△DMG≌△DNH(AAS),
∴S四邊形DGCH=S四邊形DMCN=.
則陰影部分的面積是:.故答案為:.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2);(3).【解析】
(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;(2)根據(jù)四邊形是矩形,得出,進而得出,根據(jù)30°直角三角形的性質(zhì)即可得出答案;(3)根據(jù)四邊形ABB′C′為正方形,從而得出,再根據(jù)等腰直角三角形的性質(zhì)即可得出答案.【詳解】解:(1)∵△AB′C′的邊長變?yōu)榱恕鰽BC的n倍,∴△ABC∽△AB′C′,∴,故答案為:.(2)四邊形是矩形,∴..在中,,...(3)若四邊形ABB′C′為正方形,則,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案為:.【點睛】本題考查了幾何變換中的新定義問題,以及相似三角形的判定和性質(zhì),理解[θ,n]的意義是解題的關鍵.20、自行車速度為16千米/小時,汽車速度為40千米/小時.【解析】
設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,根據(jù)甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結果同時到達,即可列方程求解.【詳解】設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,由題意得,解得x=16,經(jīng)檢驗x=16適合題意,2.5x=40,答:自行車速度為16千米/小時,汽車速度為40千米/小時.21、(1)見解析;(2)①120°;②45°【解析】
(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;
(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切線的性質(zhì)和平行線的性質(zhì)得出∠BOP=90°,由等腰三角形的性質(zhì)得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【點睛】本題是圓的綜合題目,考查了全等三角形的判定與性質(zhì)、平行四邊形的判定、切線的性質(zhì)、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識;本題綜合性強,熟練掌握切線的性質(zhì)和平行四邊形的判定是解題的關鍵.22、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標為(1,2)或(4,﹣25).【解析】
(1)設交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據(jù)兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標為(4,﹣25);當n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標為(1,2).綜上所述:D點坐標為(1,2)或(4,﹣25).【點睛】本題是二次函數(shù)綜合題.熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)和相似三角形的判定的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,把求兩函數(shù)交點問題轉化為解方程組的問題;理解坐標與圖形性質(zhì);會運用分類討論的思想解決數(shù)學問題.23、-1≤x<4,在數(shù)軸上表示見解析.【解析】試題分析:分別求出各不等式的解集,再求出其公共解集,并在數(shù)軸上表示出來即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 會議贊助協(xié)議合同范本
- 農(nóng)村魚塘轉讓合同范本
- 加盟合同范本烤鴨
- 勞務合同范本拼音寫
- 上海理財合同范本
- 包子店員工合同范本
- 勞務補助合同范本
- 修補圍網(wǎng)合同范本
- 公積金擔保合同范本
- 出租醫(yī)療服務合同范本
- 產(chǎn)品設計材料及工藝PPT完整版全套教學課件
- 普通地質(zhì)學教材
- 多重耐藥菌相關知識
- 2021年云南省中考地理試卷(附答案詳解)
- 教師資格證幼兒教育真題及答案近五年合集
- 物業(yè)管理工作流程圖全套2
- 防蠅防鼠防蟲害情況記錄表
- 化學檢驗工高級工理論知識試題題及答案
- 收養(yǎng)協(xié)議書真實范本模板
- 教程教科書i2analysts notebook8培訓中文版
- 國家電網(wǎng)公司電力安全工作規(guī)程 配電部分 試行
評論
0/150
提交評論