專題10.1 統(tǒng)計(jì)(解析版)_第1頁
專題10.1 統(tǒng)計(jì)(解析版)_第2頁
專題10.1 統(tǒng)計(jì)(解析版)_第3頁
專題10.1 統(tǒng)計(jì)(解析版)_第4頁
專題10.1 統(tǒng)計(jì)(解析版)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題10.1統(tǒng)計(jì)題型一隨機(jī)抽樣題型二統(tǒng)計(jì)圖表題型三頻率分布直方圖題型四計(jì)算眾數(shù)、中位數(shù)、平均數(shù)題型五計(jì)算標(biāo)準(zhǔn)差及方差題型六均值及方差的性質(zhì)題型七總體百分位數(shù)的估計(jì)題型一 隨機(jī)抽樣例1.(2023·江蘇·高三專題練習(xí))(多選)某學(xué)校高三年級(jí)學(xué)生有500人,其中男生320人,女生180人.為了獲得該校全體高三學(xué)生的身高信息,現(xiàn)采用分層抽樣的方法抽取樣本,并觀測(cè)樣本的指標(biāo)值(單位:cm),計(jì)算得男生樣本的均值為174,方差為16,女生樣本的均值為164,方差為30.則下列說法正確的是(

)A.如果抽取25人作為樣本,則抽取的樣本中男生有16人B.該校全體高三學(xué)生的身高均值為171C.抽取的樣本的方差為44.08D.如果已知男?女的樣本量都是25,則總樣本的均值和方差可以作為總體均值和方差的估計(jì)值【答案】AC【分析】利用分層抽樣計(jì)算即可判斷選項(xiàng)A;代入均值與方差公式即可判斷選項(xiàng)BC;因?yàn)槌闃又形窗幢壤M(jìn)行分層抽樣,所以總體中每個(gè)個(gè)體被抽到的可能性不完全相同,因而樣本的代表性差,所以作為總體的估計(jì)不合適,可以判斷D.【詳解】根據(jù)分層抽樣,抽取25人作為樣本,則抽取的樣本中男生有正確;樣本學(xué)生的身高均值,B錯(cuò)誤;抽取的樣本的方差為,C正確;因?yàn)槌闃又形窗幢壤M(jìn)行分層抽樣,所以總體中每個(gè)個(gè)體被抽到的可能性不完全相同,因而樣本的代表性差,所以作為總體的估計(jì)不合適.D錯(cuò)誤.故選:AC2.(浙江省嘉興市2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題)某工廠生產(chǎn)甲、乙、丙三種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為80件、60件、60件.為了檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)按分層抽樣的方法從以上所有產(chǎn)品中抽取50件進(jìn)行檢驗(yàn),則應(yīng)從丙型號(hào)產(chǎn)品中抽?。?/p>

)A.10件 B.15件 C.20件 D.30件【答案】B【分析】根據(jù)條件求出分層抽樣的抽樣比,由此可求出丙型號(hào)的產(chǎn)品中抽取的件數(shù).【詳解】依題意,丙型號(hào)產(chǎn)品在分層抽樣中的抽樣比為,所以,從丙型號(hào)的產(chǎn)品中抽取的件數(shù)是:.故選:B練習(xí)1.(2023春·河南開封·高三河南省杞縣高中校聯(lián)考階段練習(xí))(多選)下列情況不適合抽樣調(diào)查的有(

)A.調(diào)查一個(gè)縣各村的糧食播種面積B.了解一批炮彈的殺傷直徑C.了解高三(1)班40名學(xué)生在校一周內(nèi)的消費(fèi)D.調(diào)查一批魚苗的生長(zhǎng)情況【答案】AC【分析】根據(jù)抽樣調(diào)查、全面調(diào)查的定義判斷即可.【詳解】對(duì)于A:調(diào)查一個(gè)縣各村的糧食播種面積采用全面調(diào)查,故A錯(cuò)誤;對(duì)于B:了解一批炮彈的殺傷直徑采用抽樣調(diào)查,故B正確;對(duì)于C:了解高三(1)班40名學(xué)生在校一周內(nèi)的消費(fèi)采用全面調(diào)查,故C錯(cuò)誤;對(duì)于D:調(diào)查一批魚苗的生長(zhǎng)情況采用抽樣調(diào)查,故D正確;故選:AC練習(xí)2.(2023·江蘇·高三專題練習(xí))(多選)在分層隨機(jī)抽樣中,每個(gè)個(gè)體等可能地被抽取,下列說法錯(cuò)誤的是(

)A.每層的個(gè)體數(shù)必須一樣多B.每層抽取的個(gè)體數(shù)相等C.每層抽取的個(gè)體數(shù)可以不一樣多,但必須滿足n=n·(i=1,2,…,k),其中i是層數(shù),n是樣本量,N是第i層所包含的個(gè)體數(shù),N是總體容量D.只要抽取的樣本量一定,每層抽取的個(gè)體數(shù)沒有限制【答案】ABD【分析】利用分層抽樣的概念和性質(zhì)分析判斷每一個(gè)選項(xiàng)得解.【詳解】題干中強(qiáng)調(diào)每個(gè)個(gè)體等可能地被抽取即說明按比練習(xí)分配分層隨機(jī)抽樣,每層的個(gè)體數(shù)不一定都相等,故A說法錯(cuò)誤;由于每層的容量不一定相等,若每層抽同樣多的個(gè)體,從總體來看,各層之間的個(gè)體被抽取的可能性不一定相同,故B說法錯(cuò)誤;對(duì)于第i層的每個(gè)個(gè)體,它被抽到的可能性與層數(shù)i無關(guān),即對(duì)于每個(gè)個(gè)體來說,被抽入樣本的可能性是相同的,故C說法正確;每層抽取的個(gè)體數(shù)是有限制的,故D說法錯(cuò)誤.故選:ABD練習(xí)3.(2023·高三單元測(cè)試)為了解學(xué)生身高情況,某校以的比練習(xí)對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:

估計(jì)該校男生的人數(shù)為_________.【答案】400【分析】根據(jù)條形圖計(jì)算出樣本中男生所占比練習(xí),再乘以總體容量即可得解.【詳解】由條形圖可知,樣本中男生的頻數(shù)為,樣本中女生的頻數(shù)為,樣本中男生所占比練習(xí)為,所以估計(jì)總體中男生所占比練習(xí)為,所以估計(jì)該校男生的人數(shù)為.故答案為:.練習(xí)4.(2023春·山東棗莊·高三棗莊八中??茧A段練習(xí))用分層抽樣的方法從某高中學(xué)生中抽取1個(gè)容量為45的樣本,其中高三年級(jí)抽20人,高三年級(jí)抽10人.已知該校高二年級(jí)共有學(xué)生300人,則該校學(xué)生總數(shù)為(

)A.900 B.1100C.1200 D.1350【答案】A【分析】根據(jù)分層抽樣的性質(zhì)先求出抽樣比,進(jìn)而求解即可.【詳解】因?yàn)橛梅謱映闃拥姆椒◤哪承W(xué)生中抽取一個(gè)容量為45的樣本,其中高三年級(jí)抽20人,高三年級(jí)抽10人,所以高二年級(jí)要抽取人,因?yàn)樵撔8叨昙?jí)共有學(xué)生300人,所以每個(gè)個(gè)體被抽到的概率是,所以該校學(xué)生總數(shù)是,即該校學(xué)生總數(shù)為900人.故選:A.練習(xí)5.(2023·全國(guó)·高三專題練習(xí))現(xiàn)要用隨機(jī)數(shù)表法從總體容量為240(編號(hào)為001到240)的研究對(duì)象中挑選出50個(gè)樣本,則在下列數(shù)表中按從左至右的方式抽取到的第四個(gè)對(duì)象的編號(hào)為(

)3245174491145621651002456896405681655464416308562105214845131254102145A.5 B.44 C.165 D.210【答案】D【分析】由隨機(jī)數(shù)表抽樣方法可知答案.【詳解】由隨機(jī)數(shù)表抽樣方法可知,以3個(gè)數(shù)字為單位抽取數(shù)字,且數(shù)字不能大于240,且要去掉重復(fù)數(shù)字,據(jù)此第一個(gè)數(shù)字為114,第二個(gè)為165,第三個(gè)為100,第4個(gè)為210.故選:D題型二 統(tǒng)計(jì)圖表例3.(2023春·全國(guó)·高三專題練習(xí))(多選)光明學(xué)校組建了演講?舞蹈?航模?合唱?機(jī)器人五個(gè)社團(tuán),全校所有學(xué)生每人都參加且只參加其中一個(gè)社團(tuán),校團(tuán)委在全校學(xué)生中隨機(jī)選取一部分學(xué)生(這部分學(xué)生人數(shù)少于全校學(xué)生人數(shù))進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩個(gè)不完整的統(tǒng)計(jì)圖:則(

A.選取的這部分學(xué)生的總?cè)藬?shù)為500人B.合唱社團(tuán)的人數(shù)占樣本總量的C.選取的學(xué)生中參加機(jī)器人社團(tuán)的學(xué)生數(shù)為78人D.選取的學(xué)生中參加合唱社團(tuán)的人數(shù)比參加機(jī)器人社團(tuán)人數(shù)多125【答案】ABD【分析】根據(jù)兩個(gè)統(tǒng)計(jì)圖表中的數(shù)據(jù),先求出選取的總?cè)藬?shù),然后再對(duì)選項(xiàng)進(jìn)行逐一計(jì)算判斷即可.【詳解】由兩個(gè)統(tǒng)計(jì)圖表可得參加演講的人數(shù)為50,占選取的學(xué)生的總數(shù)的10所以選取的總?cè)藬?shù)為人,故選項(xiàng)A正確.合唱社團(tuán)的人數(shù)為200人,則合唱社團(tuán)的人數(shù)占樣本總量的,故選B正確.則選取的學(xué)生中參加機(jī)器人社團(tuán)的人數(shù)占樣本總量的所以選取的學(xué)生中參加機(jī)器人社團(tuán)的學(xué)生數(shù)為人,故選項(xiàng)C不正確.選取的學(xué)生中參加合唱社團(tuán)的人數(shù)為200,參加機(jī)器人社團(tuán)人數(shù)為75人,所以選取的學(xué)生中參加合唱社團(tuán)的人數(shù)比參加機(jī)器人社團(tuán)人數(shù)多125,選項(xiàng)D正確.故選:ABD.例4.(2023·甘肅張掖·高臺(tái)縣第一中學(xué)校考模擬預(yù)測(cè))2022年,我國(guó)彩電、智能手機(jī)、計(jì)算機(jī)等產(chǎn)量繼續(xù)排名全球第一,這標(biāo)志著我國(guó)消費(fèi)電子產(chǎn)業(yè)已經(jīng)實(shí)現(xiàn)從“跟隨”到“引領(lǐng)”的轉(zhuǎn)變,開啟了高質(zhì)量發(fā)展的新時(shí)代.如圖是2022年3月至12月我國(guó)彩電月度產(chǎn)量及增長(zhǎng)情況統(tǒng)計(jì)圖(單位:萬臺(tái),%),則關(guān)于這10個(gè)月的統(tǒng)計(jì)數(shù)據(jù),下列說法正確的是(

)(注:同比,即和去年同期相比)

A.這10個(gè)月我國(guó)彩電月度產(chǎn)量的中位數(shù)為1726萬臺(tái)B.這10個(gè)月我國(guó)彩電月度平均產(chǎn)量不超過1600萬臺(tái)C.自2022年9月起,各月我國(guó)彩電月度產(chǎn)量均同比下降D.這10個(gè)月我國(guó)彩電月度產(chǎn)量同比增長(zhǎng)率的極差不超過0.4【答案】D【分析】根據(jù)條形圖結(jié)合中位數(shù),平均數(shù)和極差定義分別判斷各個(gè)選項(xiàng)即可.【詳解】將這10個(gè)月我國(guó)彩電月度產(chǎn)量(單位:萬臺(tái))按從小到大排列依次為1513,1540,1553,1650,1727,1783,1802,1846,1926,2097,中位數(shù)為第5個(gè)數(shù)與第6個(gè)數(shù)的平均數(shù),即,A錯(cuò)誤;這10個(gè)月我國(guó)彩電月度平均產(chǎn)量萬臺(tái),B錯(cuò)誤;自2022年9月起,我國(guó)彩電月度產(chǎn)量雖然逐月減少,但同比是與去年同月相比,由同比增長(zhǎng)率可知,9月、10月、11月的同比增長(zhǎng)率均為正數(shù),故月度產(chǎn)量同比有所增長(zhǎng),C錯(cuò)誤;由題圖可知,這10個(gè)月產(chǎn)量的同比增長(zhǎng)率的最大值與最小值分別為25.6%與-8.3%,故其極差為,故D正確.故選:D.練習(xí)6.(2023·全國(guó)·高三專題練習(xí))2023年春運(yùn)期間,某地交通部門為了解出行情況,統(tǒng)計(jì)了該地2023年正月初一至正月初七的高速公路車流量(單位:萬車次)及同比增長(zhǎng)率(同比增長(zhǎng)率=),并繪制了如圖所示的統(tǒng)計(jì)圖,則下列結(jié)論中錯(cuò)誤的是(

A.2023年正月初一至正月初七的車流量的極差為24B.2023年正月初一至正月初七的車流量的中位數(shù)為18C.2023年正月初一至正月初七的車流量比2022年同期車流量多的有4天D.2022年正月初四的車流量小于20萬車次【答案】D【分析】對(duì)于A,2023年車流量的最大值與最小值的差即為極差;對(duì)于B,數(shù)據(jù)從小到大排列,中間的一個(gè)數(shù)或者中間兩個(gè)數(shù)的平均數(shù);對(duì)于C,通過觀察統(tǒng)計(jì)圖的右側(cè)增長(zhǎng)率可得結(jié)果;對(duì)于D,根據(jù)2023年正月初四的車流量以及同比增長(zhǎng)率計(jì)算即可.,【詳解】對(duì)于A,由題圖知,2023年正月初一至正月初七的車流量的極差為,故A正確;對(duì)于B,易知2023年正月初一至正月初七的車流量的中位數(shù)為18,故B正確;對(duì)于C,2023年正月初二、初五、初六、初七這4天車流量的同比增長(zhǎng)率均大于0,所以2023年正月初一至正月初七的車流量比2022年同期車流量多的有4天,故C正確;對(duì)于D,2023年正月初四的車流量為18萬車次,同比增長(zhǎng)率為,設(shè)2022年正月初四的車流量為x萬車次,則,解得x=20,故D錯(cuò)誤.故選:D.練習(xí)7.(2023·高三課時(shí)練習(xí))在考試測(cè)評(píng)中,常用難度曲線圖來檢測(cè)題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對(duì)率也應(yīng)較高,如圖是某次數(shù)學(xué)測(cè)試壓軸題的第1,2問得分難度曲線圖,第1,2問滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1,2問的平均難度,則下列說法正確的是(

A.此題沒有考生得12分B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績(jī)的好與壞C.分?jǐn)?shù)在的考生此大題的平均得分大約為分D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差【答案】B【分析】根據(jù)折線統(tǒng)計(jì)圖分析可得.【詳解】由圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問的平均難度,分?jǐn)?shù)越高的同學(xué),第1問得分較分散,第2問得分比較集中,說明此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績(jī)的好與壞,故B正確.因?yàn)橛械?問和第2問均有人做出,可能是同一個(gè)人,故此題可能有考生得12分,故A錯(cuò)誤;分?jǐn)?shù)在的考生此大題的第1、2問的難度系數(shù)均為,故其平均得分大約為分,故C錯(cuò)誤;因?yàn)榉謹(jǐn)?shù)越高的同學(xué),第1問得分高,故第問得高分的學(xué)生更多,即第問學(xué)生得分越分散,而第問得高分的學(xué)生相對(duì)較小,即第問學(xué)生得分比較集中,所以全體考生第1問的得分標(biāo)準(zhǔn)差大于第2問的得分標(biāo)準(zhǔn)差,故D錯(cuò)誤.故選:B.練習(xí)8.(2023·江西鷹潭·貴溪市實(shí)驗(yàn)中學(xué)??寄M預(yù)測(cè))下圖反映2017年到2022年6月我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入及增速統(tǒng)計(jì)情況根據(jù)圖中的信息,下列說法正確的是(

)A.2017-2022年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入逐年增加B.2017-2022年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入逐年下降C.2017-2021年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入增速最快的是2021年D.2017-2021年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入的平均數(shù)大于630000億元【答案】C【分析】根據(jù)題意結(jié)合統(tǒng)計(jì)相關(guān)知識(shí)逐項(xiàng)判斷即可.【詳解】因?yàn)?022下半年企業(yè)營(yíng)業(yè)總收入未知,所以無法判斷2022年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入是否增長(zhǎng),故A、B錯(cuò)誤;由圖可知2017-2021年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入增速依次為,所以增速最快的是2021年,故C正確;2017-2021年我國(guó)國(guó)有企業(yè)營(yíng)業(yè)總收入的平均數(shù)為億元,因?yàn)椋蔇錯(cuò)誤.故選:C.練習(xí)9.(2023·河南·校聯(lián)考模擬預(yù)測(cè))如圖為近一年我國(guó)商品零售總額和餐飲收入總額同比增速情況折線圖,根據(jù)該圖,下列結(jié)論正確的是(

)A.2023年1—2月份,商品零售總額同比增長(zhǎng)9.2%B.2022年3—12月份,餐飲收入總額同比增速都降低C.2022年6—10月份,商品零售總額同比增速都增加D.2022年12月,餐飲收入總額環(huán)比增速為-14.1%【答案】C【分析】根據(jù)折線圖數(shù)據(jù),結(jié)合同比與環(huán)比概念與數(shù)據(jù)波動(dòng)情況的關(guān)系進(jìn)行辨析即可.【詳解】對(duì)于A,2023年1—2月份,商品零售總額同比增長(zhǎng)2.9%,故A錯(cuò)誤;對(duì)于B,2022年8月份,餐飲收入總額同比增速增加,故B錯(cuò)誤;對(duì)于C,2022年6—10月份,商品零售總額同比增速都增加,故C正確;對(duì)于D,2022年12月,餐飲收入總額環(huán)比增速并未告知,故D錯(cuò)誤.故選C.練習(xí)10.(2023·江蘇·高三專題練習(xí))隨著經(jīng)濟(jì)的發(fā)展和人民生活水平的提高,我國(guó)的旅游業(yè)也得到了極大的發(fā)展,據(jù)國(guó)家統(tǒng)計(jì)局網(wǎng)站數(shù)據(jù)顯示,近十年我國(guó)國(guó)內(nèi)游客人數(shù)(單位:百萬)折線圖如圖所示,則下列結(jié)論不正確的是(

)A.近十年,城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)的平均數(shù)大于農(nóng)村居民國(guó)內(nèi)游客人數(shù)的平均數(shù)B.近十年,城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)的方差大于農(nóng)村居民國(guó)內(nèi)游客人數(shù)的方差C.近十年,農(nóng)村居民國(guó)內(nèi)游客人數(shù)的中位數(shù)為1240D.2012年到2019年,國(guó)內(nèi)游客中城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)占比逐年增加【答案】C【分析】根據(jù)每一年城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)都多于農(nóng)村居民國(guó)內(nèi)游客人數(shù),即可判斷選項(xiàng)A;根據(jù)近十年,城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)的波動(dòng)比農(nóng)村居民國(guó)內(nèi)游客人數(shù)波動(dòng)大,即可判斷選項(xiàng)B;由中位數(shù)的計(jì)算方法,可得近十年農(nóng)村居民國(guó)內(nèi)游客人數(shù)的中位數(shù),即可判斷選項(xiàng)C;根據(jù)2012年到2019年,國(guó)內(nèi)游客中城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)每年都比農(nóng)村居民國(guó)內(nèi)游客人數(shù)增長(zhǎng)多,即可判斷選項(xiàng)D.【詳解】由圖可知,每一年城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)都多于農(nóng)村居民國(guó)內(nèi)游客人數(shù),所以近十年,城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)的平均數(shù)大于農(nóng)村居民國(guó)內(nèi)游客人數(shù)的平均數(shù),故選項(xiàng)A正確;由圖可知,近十年,城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)的波動(dòng)比農(nóng)村居民國(guó)內(nèi)游客人數(shù)波動(dòng)大,所以由方差的意義可知,近十年城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)的方差大于農(nóng)村居民國(guó)內(nèi)游客人數(shù)的方差,故選項(xiàng)B正確;將近十年農(nóng)村居民國(guó)內(nèi)游客人數(shù)從小到大進(jìn)行排列,可得近十年農(nóng)村居民國(guó)內(nèi)游客人數(shù)的中位數(shù)為,故選項(xiàng)C錯(cuò)誤;由圖可知,2012年到2019年,國(guó)內(nèi)游客中城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)每年都比農(nóng)村居民國(guó)內(nèi)游客人數(shù)增長(zhǎng)多,所以2012年到2019年,國(guó)內(nèi)游客中城鎮(zhèn)居民國(guó)內(nèi)游客人數(shù)占比逐年增加,故選項(xiàng)D正確.故選:C.題型三 頻率分布直方圖例5.(2023·全國(guó)·高三專題練習(xí))(多選)樣本容量為100的樣本,其數(shù)據(jù)分布在內(nèi),將樣本數(shù)據(jù)分為4組:,,,,得到頻率分布直方圖如圖所示,則下列說法中正確的是()

A.樣本數(shù)據(jù)分布在內(nèi)的頻率為0.32B.樣本數(shù)據(jù)分布在內(nèi)的頻數(shù)為40C.樣本數(shù)據(jù)分布在內(nèi)的頻數(shù)為40D.估計(jì)總體數(shù)據(jù)大約有分布在內(nèi)【答案】ABC【分析】根據(jù)頻率分布直方圖一一分析可得.【詳解】對(duì)于A,由題圖可得,樣本數(shù)據(jù)分布在內(nèi)的頻率為,故A正確;對(duì)于B,由題圖可得,樣本數(shù)據(jù)分布在內(nèi)的頻數(shù)為,故B正確;對(duì)于C,由題圖可得,樣本數(shù)據(jù)分布在內(nèi)的頻數(shù)為,故C正確;對(duì)于D,由題圖可估計(jì),總體數(shù)據(jù)分布在內(nèi)的比例約為,故D錯(cuò)誤.故選:ABC例6.(2023春·山東棗莊·高三棗莊八中??茧A段練習(xí))(多選)某學(xué)校為普及安全知識(shí),對(duì)本校1500名高三學(xué)生開展了一次校園安全知識(shí)競(jìng)賽答題活動(dòng)(滿分為100分).現(xiàn)從中隨機(jī)抽取100名學(xué)生的得分進(jìn)行統(tǒng)計(jì)分析,整理得到如圖所示的頻率分布直方圖,則根據(jù)該直方圖,下列結(jié)論正確的是(

A.圖中的值為0.017B.該校高三至少有80%的學(xué)生競(jìng)賽得分介于60至90之間C.該校高三學(xué)生競(jìng)賽得分不小于90的人數(shù)估計(jì)為195人D.該校高三學(xué)生競(jìng)賽得分的第75百分位數(shù)估計(jì)大于80【答案】ACD【分析】根據(jù)頻率分布直方圖相關(guān)知識(shí)直接求解參數(shù),從而判斷A;計(jì)算得分介于60至90之間的頻率,從而判斷B;根據(jù)得分不小于90的人數(shù)的頻率從而估計(jì)整體,從而判斷C;計(jì)算得分介于50至80之間的頻率,與0.75比較,從而判斷第75百分位數(shù)與80的大小關(guān)系,進(jìn)而判斷D.【詳解】由頻率分布直方圖性質(zhì)可得:,解得,故A正確;得分介于60至90之間的頻率為,即該校高三至少有77%的學(xué)生競(jìng)賽得分介于60至90之間,故B錯(cuò)誤;得分不小于90的人數(shù)估計(jì)為,故C正確;得分介于50至80之間的頻率為,故D正確.故選:ACD練習(xí)11.(2023·云南·校聯(lián)考三模)(多選)為了解學(xué)生的身體狀況,某校隨機(jī)抽取了100名學(xué)生測(cè)量體重,經(jīng)統(tǒng)計(jì),這些學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于45至70之間,將數(shù)據(jù)整理得到如圖所示的頻率分布直方圖,則(

A.頻率分布直方圖中的值為0.02B.這100名學(xué)生中體重低于60千克的人數(shù)為80C.估計(jì)這100名學(xué)生體重的眾數(shù)為57.5D.據(jù)此可以估計(jì)該校學(xué)生體重的分位數(shù)約為【答案】ACD【分析】根據(jù)頻率分布直方圖中所有的小矩形的面積之和為得到方程,求出的值,再根據(jù)頻率分布直方圖一一分析即可.【詳解】對(duì)于A:由,解得,故A正確;對(duì)于B:這100名學(xué)生中體重低于60千克的人數(shù)為人,故B錯(cuò)誤;對(duì)于C:估計(jì)這100名學(xué)生體重的眾數(shù)為,故C正確;對(duì)于D:由,所以該校學(xué)生體重的分位數(shù)位于內(nèi),設(shè)分位數(shù)為,則,解得,故估計(jì)該校學(xué)生體重的分位數(shù)約為,即D正確;故選:ACD練習(xí)12.(2023·高三單元測(cè)試)某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:頻率分布表組別分組頻數(shù)頻率第1組8第2組a第3組20第4組第5組2b合計(jì)頻率分布直方圖

(1)寫出a,b,x,y的值;(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng),求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率.【答案】(1),,,(2)【分析】(1)根據(jù)頻率分布表和頻率分布直方圖計(jì)算可得結(jié)果;(2)利用列舉法和古典概型的概率公式計(jì)算可得結(jié)果.【詳解】(1)樣本容量,所以第組的頻數(shù)為,,所以,所以第組的頻率為,所以,,,.(2)由(1)可知,第4組共有4人,記為,第5組共有2人,記為.從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有,共15種情況.設(shè)“隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組”為事件,有,共9種情況.所以隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率是.練習(xí)13.(2023春·湖南·高三校聯(lián)考階段練習(xí))某科技學(xué)校組織全體學(xué)生參加了主題為“創(chuàng)意致匠心,技能動(dòng)天下”的文創(chuàng)大賽,隨機(jī)抽取了400名學(xué)生進(jìn)行成績(jī)統(tǒng)計(jì),發(fā)現(xiàn)抽取的學(xué)生的成績(jī)都在50分至100分之間,進(jìn)行適當(dāng)分組后(每組的取值區(qū)間均為左閉右開),畫出頻率分布直方圖(如圖),下列說法錯(cuò)誤的是(

A.在被抽取的學(xué)生中,成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生有160人B.圖中x的值為0.020C.估計(jì)全校學(xué)生成績(jī)的中位數(shù)約為86.7D.這400名學(xué)生中成績(jī)?cè)?0分及以上的人數(shù)占【答案】B【分析】根據(jù)直方圖的定義結(jié)合中位數(shù)估計(jì)值求解即可.【詳解】由題意,成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù)為,故A正確;由,得,故B錯(cuò)誤;設(shè)中位數(shù)為,前3個(gè)矩形面積之和為0.3,前四個(gè)矩形面積之和為0.6,則,得,故C正確;80分及以上分?jǐn)?shù)的頻率為,占總?cè)藬?shù)比練習(xí)為,故D正確;故選:B.練習(xí)14.(2023春·全國(guó)·高三專題練習(xí))從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動(dòng),則從身高在內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為(

A.3 B.4 C.5 D.6【答案】A【分析】利用小矩形的面積之和為,求出,再求出三組內(nèi)的學(xué)生總數(shù),根據(jù)抽樣比即可求解.【詳解】直方圖中各個(gè)小矩形的面積之和為,,解得,由直方圖可知三個(gè)區(qū)域內(nèi)的學(xué)生總數(shù)為,其中身高在[140,150]內(nèi)的學(xué)生人數(shù)為.故選:A練習(xí)15.(2023·高三課時(shí)練習(xí))某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示;其中成績(jī)分組區(qū)間是,,,,.

(1)求圖中的值;(2)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如表所示,求數(shù)學(xué)成績(jī)?cè)谥獾娜藬?shù).分?jǐn)?shù)段【答案】(1)(2)10【分析】(1)根據(jù)頻率分布直方圖中各個(gè)小矩形的面積和等于1可得;(2)根據(jù)表中各分?jǐn)?shù)段人數(shù)比,求出數(shù)學(xué)成績(jī)?cè)诟鞣謹(jǐn)?shù)段內(nèi)的人數(shù),結(jié)合樣本容量即可得出所求.【詳解】(1)根據(jù)頻率分布直方圖中各個(gè)小矩形的面積和等于1得,,解得,所以圖中的值為;(2)數(shù)學(xué)成績(jī)?cè)诘娜藬?shù)為:(人);數(shù)學(xué)成績(jī)?cè)诘娜藬?shù)為:(人);數(shù)學(xué)成績(jī)?cè)诘娜藬?shù)為:(人);數(shù)學(xué)成績(jī)?cè)冢┑娜藬?shù)為:(人);所以數(shù)學(xué)成績(jī)?cè)谥獾娜藬?shù)為:(人).題型四 計(jì)算眾數(shù)、中位數(shù)、平均數(shù)例7.(2023春·上海浦東新·高三上海市建平中學(xué)??茧A段練習(xí))某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”.為了解參加本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了50名學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出如下的頻率分布直方圖.

(1)若,估計(jì)本次競(jìng)賽學(xué)生成績(jī)的平均數(shù)(同一組中的數(shù)據(jù)用組中值代表);(2)若樣本中位于的成績(jī)共有2個(gè),,估計(jì)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù).【答案】(1)70.6(2)71【分析】(1)根據(jù)頻率分布直方圖求平均數(shù)即可;(2)先根據(jù)已知求出x,y,再根據(jù)頻率分布直方圖求中位數(shù)即可;【詳解】(1),平均數(shù)為:(2)設(shè)中位數(shù)為,前兩組頻率和為前三組頻率和為,則,解得例8.(2023春·上海楊浦·高二上海市楊浦高級(jí)中學(xué)校考開學(xué)考試)已知x是1,2,x,4,5這5個(gè)數(shù)的中位數(shù),又知,5,,y這四個(gè)數(shù)據(jù)的平均數(shù)為3,則的最小值為______.【答案】12【分析】根據(jù)中位數(shù)得到,根據(jù)平均數(shù)得到,再利用均值不等式計(jì)算得到答案.【詳解】x是1,2,x,4,5這5個(gè)數(shù)的中位數(shù),故;,5,,y這四個(gè)數(shù)據(jù)的平均數(shù)為3,故,即,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:12練習(xí)16.(2023·全國(guó)·高三專題練習(xí))(多選)某產(chǎn)品售后服務(wù)中心選取了20個(gè)工作日,分別記錄了每個(gè)工作日接到的客戶服務(wù)電話的數(shù)量(單位:次):63

38

25

42

56

48

53

39

28

4745

52

59

48

41

62

48

50

52

27則這組數(shù)據(jù)的(

)A.眾數(shù)是48 B.中位數(shù)是48 C.極差是37 D.5%分位數(shù)是25【答案】AB【分析】利用眾數(shù),中位數(shù),極差和百分位數(shù)的定義進(jìn)行判斷即可.【詳解】這組數(shù)據(jù)中48出現(xiàn)了3次,出現(xiàn)次數(shù)最多,因此眾數(shù)是48,A正確;從小到大排列20個(gè)數(shù)據(jù)分別為25,27,28,38,39,41,42,45,47,48,48,48,50,52,52,53,56,59,62,63,第10位和第11位均為48,兩者的平均數(shù)也是48,因此中位數(shù)是48,B正確;最大值為63,最小值為25,因此極差為,C錯(cuò)誤;是整數(shù),分位數(shù)應(yīng)取第1位與第2位的平均值,即25與27的平均值26,D錯(cuò)誤.故選:AB.練習(xí)17.(2023春·貴州黔東南·高三??茧A段練習(xí))已知,若數(shù)據(jù)1,2,3,,的中位數(shù)與平均數(shù)均為,則點(diǎn)(

)A.在直線右下方,在直線右下方B.在直線左上方,在直線左上方C.在直線右下方,在直線左上方D.在直線左上方,在直線右下方【答案】A【分析】由題得數(shù)據(jù)2,3,從小到大的順序排列為,在的左邊,求出和,再利用線性規(guī)劃求解.【詳解】由題得數(shù)據(jù)2,3,從小到大的順序排列為,在的左邊,因?yàn)?,所以點(diǎn)在直線右下方.由題得.因?yàn)?,所以,所?所以,所以點(diǎn)在直線右下方.故選:A練習(xí)18.(2023春·重慶沙坪壩·高二重慶一中??计谥校┫聢D是根據(jù)某班學(xué)生體育測(cè)試成績(jī)畫出的頻率分布直方圖,由直方圖得到的中位數(shù)為(

A. B. C. D.【答案】D【分析】首先判斷出中位數(shù)落在哪一組,再設(shè)中位數(shù)為,列出方程,求解即可.【詳解】由圖可知,第一組的頻率為:,前兩組的頻率為:,前三組的頻率為:,所以中位數(shù)在內(nèi),設(shè)中位數(shù)為,則,解得,故選:D.練習(xí)19.(2023春·陜西安康·高三陜西省安康中學(xué)??茧A段練習(xí))某高中體育教師從甲、乙兩個(gè)班級(jí)中分別隨機(jī)抽取女生各15名進(jìn)行原地投擲鉛球測(cè)試,并將每名學(xué)生的測(cè)試成績(jī)制成如圖所示的莖葉圖.以樣本估計(jì)總體,下列說法錯(cuò)誤的是(

)A.甲班女生成績(jī)的中位數(shù)與乙班女生成績(jī)的中位數(shù)大致相同B.從甲班女生中任取1人,她的成績(jī)不低于8.2的概率大于0.2C.乙班女生成績(jī)的極差大于甲班成績(jī)的極差D.乙班女生成績(jī)不低于7.5的概率約為0.6【答案】C【分析】根據(jù)莖葉圖結(jié)合中位數(shù)、極差的概念判斷AC,利用古典概型的概率公式判斷BD.【詳解】由莖葉圖可知甲班女生樣本的成績(jī)的中位數(shù)為7.7,乙班女生樣本的成績(jī)的中位數(shù)為7.6,因?yàn)閮烧吆芙咏?,所以A說法正確;甲班女生樣本的成績(jī)不低于8.2的有5人,所以甲班女生樣本的成績(jī)不低于8.2的概率為,所以B說法正確;乙班女生樣本的成績(jī)的極差為,甲班女生樣本的成績(jī)的極差為,因?yàn)閮烧邩颖緲O差很接近,所以乙班女生成績(jī)的極差和甲班成績(jī)的極差大小不一定,所以C說法不正確;乙班女生樣本的成績(jī)不低于7.5的有9人,所以乙班女生樣本的成績(jī)不低于7.5的概率為,所以D說法正確.故選:C練習(xí)20.(2023春·山東濱州·高三山東省北鎮(zhèn)中學(xué)校聯(lián)考階段練習(xí))某高校為了對(duì)該校研究生的思想道德進(jìn)行教育指導(dǎo),對(duì)該校120名研究生進(jìn)行考試,并將考試的分值(百分制)按照分成6組,制成如圖所示的頻率分布直方圖.已知,分值在的人數(shù)為15.

(1)求圖中的值;(2)若思想道德分值的平均數(shù)、中位數(shù)均超過75分,則認(rèn)為該校研究生思想道德良好,試判斷該校研究生的思想道德是否良好.【答案】(1),,(2)該學(xué)校研究生思想道德良好.【分析】(1)根據(jù)頻率確定,再根據(jù)頻率和為1計(jì)算得到答案.(2)分別根據(jù)公式計(jì)算平均數(shù)和中位數(shù),比較得到答案.【詳解】(1)分值在的人數(shù)為15人,所以的頻率為,即.,又,所以,解得,.(2)這組數(shù)據(jù)的平均數(shù)為:,前組頻率和為,前組頻率和為,故這組數(shù)據(jù)的中位數(shù)滿足,解得,所以該學(xué)校研究生思想道德良好.題型五 計(jì)算標(biāo)準(zhǔn)差及方差例9.(2023春·上海浦東新·高二上海市建平中學(xué)??茧A段練習(xí))已知這5個(gè)數(shù)的平均數(shù)為3,方差為2,則這4個(gè)數(shù)的方差為___________.【答案】/1.25/【分析】根據(jù)這5個(gè)數(shù)的平均數(shù)求出這4個(gè)數(shù)的平均數(shù),再利用公式計(jì)算出和這4個(gè)數(shù)的方差.【詳解】因?yàn)檫@5個(gè)數(shù)的平均數(shù)為3,方差為2,所以,即,所以這4個(gè)數(shù)的平均數(shù)為,所以,即,所以這4個(gè)數(shù)的方差為故答案為:例10.(2023·江蘇·高三專題練習(xí))在高三某次模擬考試中,甲、乙兩個(gè)班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)如下表:班級(jí)人數(shù)平均分?jǐn)?shù)方差甲40705乙60808則兩個(gè)班所有學(xué)生的數(shù)學(xué)成績(jī)的方差為(

).A.6.5 B.13 C.30.8 D.31.8【答案】C【分析】由表格的數(shù)據(jù)求出兩個(gè)班所有學(xué)生的數(shù)學(xué)平均分?jǐn)?shù),再根據(jù)方差公式計(jì)算兩個(gè)班所有學(xué)生的數(shù)學(xué)成績(jī)的方差.【詳解】因?yàn)榧装嗥骄謹(jǐn)?shù)為,乙班平均分?jǐn)?shù)為,所以兩個(gè)班所有學(xué)生的數(shù)學(xué)平均分?jǐn)?shù)為,所以兩個(gè)班所有學(xué)生的數(shù)學(xué)成績(jī)的方差為:.故選:C練習(xí)21.(2023·江蘇·高一專題練習(xí))某學(xué)校共有學(xué)生2000人,其中高三800人,高二、高三各600人,學(xué)校對(duì)學(xué)生在暑假期間每天的讀書時(shí)間做了調(diào)查統(tǒng)計(jì),全體學(xué)生每天的讀書時(shí)間的平均數(shù)為,方差為,其中三個(gè)年級(jí)學(xué)生每天讀書時(shí)間的平均數(shù)分別為,,,又已知高三年級(jí)、高二年級(jí)每天讀書時(shí)間的方差分別為,,則高三學(xué)生每天讀書時(shí)間的方差________.【答案】3【分析】由題目中的條件以及分層抽樣中方差公式即可解答.【詳解】由題意可得,,解得.故答案為:3.練習(xí)22.(2023春·全國(guó)·高三專題練習(xí))某班共有40名學(xué)生,其中23名男生的身高平均數(shù)為,方差為28;17名女生的身高平均數(shù)為;若全班學(xué)生的身高方差為62,則該班級(jí)女生身高的方差為________.【答案】【分析】求出班級(jí)平均身高,然后利用方差的性質(zhì)可解.【詳解】由題意可知,所有學(xué)生的平均身高為:,設(shè)班級(jí)女生身高的方差為,則,所以,即該班級(jí)女生身高的方差為.故答案為:.練習(xí)23.(2023春·山東濱州·高三山東省北鎮(zhèn)中學(xué)校聯(lián)考階段練習(xí))已知一組數(shù)據(jù)1,2,,4,5的平均數(shù)為3,則這組數(shù)據(jù)的方差為__________.【答案】2【分析】先根據(jù)平均數(shù)計(jì)算出的值,再根據(jù)方差的計(jì)算公式計(jì)算出這組數(shù)的方差.【詳解】依題意,所以方差為.故答案為:.練習(xí)24.(2022秋·廣東廣州·高三鐵一中學(xué)??茧A段練習(xí))在某市舉行的唱歌比賽中,5名專業(yè)人士和5名觀眾代表組成一個(gè)評(píng)委小組,給參賽選手打分.這10個(gè)分?jǐn)?shù)的平均分為8分,方差為12.若去掉一個(gè)最高分10分和一個(gè)最低分6分,則剩下的8個(gè)分?jǐn)?shù)的方差為__________.【答案】【分析】設(shè)這個(gè)分?jǐn)?shù)分別為,平均數(shù)為,方差為,的平均數(shù)為,方差為,由,可得,從而得到,得到,代入即可.【詳解】設(shè)這個(gè)分?jǐn)?shù)分別為,平均數(shù)為,方差為,的平均數(shù)為,方差為,所以,則,則,即,則,所以.故答案為:練習(xí)25.(2023春·安徽·高三安徽省潁上第一中學(xué)校聯(lián)考階段練習(xí))小明在整理數(shù)據(jù)時(shí)得到了該組數(shù)據(jù)的平均數(shù)為20,方差為28,后來發(fā)現(xiàn)有兩個(gè)數(shù)據(jù)記錄有誤,一個(gè)錯(cuò)將11記錄為21,另一個(gè)錯(cuò)將29記錄為19.在對(duì)錯(cuò)誤的數(shù)據(jù)進(jìn)行更正后,重新求得該組數(shù)據(jù)的平均數(shù)為,方差為,則(

)A., B., C., D.,【答案】D【分析】不妨記更正前該組數(shù)據(jù)為:,然后根據(jù)平均數(shù)和方差公式先求出,再利用公式即可求得更正后的平均數(shù)和方差.【詳解】不妨記更正前該組數(shù)據(jù)為:,則更正后的數(shù)據(jù)為:.由題可知,,整理得.所以,.故選:D題型六 均值及方差的性質(zhì)例11.(2023春·全國(guó)·高三專題練習(xí))若數(shù)據(jù),,,,的方差為,則數(shù)據(jù),,,,的方差為________.【答案】【分析】由方差的性質(zhì)可直接求得結(jié)果.【詳解】因?yàn)閿?shù)據(jù),,,,的方差為,由方差的性質(zhì)可知數(shù)據(jù),,,,的方差為.故答案為:.例12.(2023·福建寧德·??寄M預(yù)測(cè))已知一組數(shù)據(jù)的平均數(shù)為,標(biāo)準(zhǔn)差為.若的平均數(shù)與方差相等,則的最大值為(

)A. B. C. D.【答案】A【分析】利用平均數(shù)與方差的性質(zhì),結(jié)合二次函數(shù)的性質(zhì)即可求解.【詳解】由題意可知,,則.因?yàn)?,所以,解?令設(shè),則,從而,由二次函數(shù)的性質(zhì)知,對(duì)稱軸為,開口向下,所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時(shí),取得最大值為.故選:A.練習(xí)26.(2023·全國(guó)·高三專題練習(xí))已知樣本數(shù)據(jù)的平均數(shù)與方差分別是和,若,且樣本數(shù)據(jù)的平均數(shù)與方差分別是和,則________.【答案】100【分析】首項(xiàng)根據(jù)平均數(shù)和方差的相關(guān)性質(zhì)列出方程,求出,再利用平均數(shù)和方差的關(guān)系式求出.【詳解】由題意得:,解得:,所以,,化簡(jiǎn)得:,.故答案為:100練習(xí)27.(2023春·山西·高三統(tǒng)考階段練習(xí))已知一組數(shù)據(jù)的平均數(shù)為6,方差為9,則另一組數(shù)據(jù)的平均數(shù)和方差分別為(

)A. B. C. D.【答案】A【分析】利用平均數(shù)與方差的性質(zhì)求解即可.【詳解】因?yàn)榈钠骄鶖?shù)為6,方差為9,所以的平均數(shù)為,方差為.故選:A練習(xí)28.(2023·江蘇·高三專題練習(xí))若一組樣本數(shù)據(jù)、、、的平均數(shù)為,另一組樣本數(shù)據(jù)、、、的方差為,則兩組樣本數(shù)據(jù)合并為一組樣本數(shù)據(jù)后的平均數(shù)和方差分別為(

)A., B., C., D.,【答案】A【分析】計(jì)算出、的值,再利用平均數(shù)和方差公式可求得合并后的新數(shù)據(jù)的平均數(shù)和方差.【詳解】由題意可知,數(shù)據(jù)、、、的平均數(shù)為,則,則所以,數(shù)據(jù)、、、的平均數(shù)為,方差為,所以,,將兩組數(shù)據(jù)合并后,新數(shù)據(jù)、、、、、、、的平均數(shù)為,方差為.故選:A.練習(xí)29.(2023·全國(guó)·高三專題練習(xí))經(jīng)過簡(jiǎn)單隨機(jī)抽樣獲得的樣本數(shù)據(jù)為,且數(shù)據(jù)的平均數(shù)為,方差為,則下列說法正確的是(

)A.若數(shù)據(jù),方差,則所有的數(shù)據(jù)都為0B.若數(shù)據(jù),的平均數(shù)為,則的平均數(shù)為6C.若數(shù)據(jù),的方差為,則的方差為12D.若數(shù)據(jù),的分位數(shù)為90,則可以估計(jì)總體中有至少有的數(shù)據(jù)不大于90【答案】C【分析】根據(jù)數(shù)據(jù)的平均數(shù),方差,百分位數(shù)的性質(zhì)逐項(xiàng)進(jìn)行檢驗(yàn)即可判斷.【詳解】對(duì)于,數(shù)據(jù)的方差時(shí),說明所有的數(shù)據(jù)都相等,但不一定為,故選項(xiàng)錯(cuò)誤;對(duì)于,數(shù)據(jù),的平均數(shù)為,數(shù)據(jù)的平均數(shù)為,故選項(xiàng)錯(cuò)誤;對(duì)于,數(shù)據(jù)的方差為,數(shù)據(jù)的方差為,故選項(xiàng)正確;對(duì)于,數(shù)據(jù),的分位數(shù)為90,則可以估計(jì)總體中有至少有的數(shù)據(jù)大于或等于90,故選項(xiàng)錯(cuò)誤,故選:.練習(xí)30.(2023·全國(guó)·高三專題練習(xí))(多選)已知樣本:,,…,的均值為4,標(biāo)準(zhǔn)差為m,樣本:,,…,的均值為3,方差為4,則下列結(jié)論正確的是(

)A. B.C.樣本和樣本的極差相同 D.樣本和樣本的中位數(shù)相同【答案】AC【分析】若給定一組數(shù)據(jù),,…,,,其平均數(shù)為,方差為,則,,…,的平均數(shù)為,方差為,,,…,的平均數(shù)為,方差為,求出,,,,再比較極差及中位數(shù)即可判斷各選項(xiàng).【詳解】選項(xiàng)A,B,設(shè)樣本,,…,的均值為,方差為,極差為M,中位數(shù)為q,則,則,,,所以,,,,故A正確,B錯(cuò)誤;選項(xiàng)C,樣本:,,…,;樣本:,,…,,可得樣本和樣本的極差相等,故C正確;選項(xiàng)D,設(shè)樣本的中位數(shù)為,樣本的中位數(shù)為,故D錯(cuò)誤;故選:AC.題型七 總體百分位數(shù)的估計(jì)例13.(2023春·河南·高三校聯(lián)考期末)有一組樣本數(shù)據(jù)如下:56,62,63,63,65,66,68,69,71,74,76,76,77,78,79,79,82,85,87,88,95,98,則其25%分位數(shù)與75%分位數(shù)的和為(

)A.144 B.145 C.148 D.153【答案】C【分析】由百分位數(shù)的定義求解即可.【詳解】因?yàn)?,所以樣本?shù)據(jù)的25%分位數(shù)為第六個(gè)數(shù)據(jù)即66;因?yàn)?,所以樣本?shù)據(jù)的75%分位數(shù)為第十七個(gè)數(shù)據(jù)即82.所以25%分位數(shù)與75%分位數(shù)的和為.故選:C.例14.(2023春·全國(guó)·高三專題練習(xí))少年強(qiáng)則國(guó)強(qiáng),少年智則國(guó)智.黨和政府一直重視青少年的健康成長(zhǎng),出臺(tái)了一系列政策和行動(dòng)計(jì)劃,提高學(xué)生身體素質(zhì).為了加強(qiáng)對(duì)學(xué)生的營(yíng)養(yǎng)健康監(jiān)測(cè),某校在3000名學(xué)生中,抽查了100名學(xué)生的體重?cái)?shù)據(jù)情況.根據(jù)所得數(shù)據(jù)繪制樣本的頻率分布直方圖如圖所示,則下列結(jié)論正確的是(

)A.樣本的眾數(shù)為65 B.樣本的第80百分位數(shù)為72.5C.樣本的平均值為67.5 D.該校學(xué)生中低于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論