版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣西南寧市第十四中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某校去年有1100名同學(xué)參加高考,從中隨機(jī)抽取50名同學(xué)總成績進(jìn)行分析,在這個調(diào)查中,下列敘述錯誤的是A.總體是:1100名同學(xué)的總成績 B.個體是:每一名同學(xué)C.樣本是:50名同學(xué)的總成績 D.樣本容量是:502.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個公共點(diǎn),且滿足,則的值為()A. B.C. D.3.已知雙曲線C1的一條漸近線方程為y=kx,離心率為e1,雙曲線C2的一條漸近線方程為y=x,離心率為e2,且雙曲線C1、C2在第一象限交于點(diǎn)(1,1),則=()A.|k| B.C.1 D.24.若實(shí)數(shù)滿足約束條件,則最小值為()A.-2 B.-1C.1 D.25.直線過點(diǎn)且與雙曲線僅有一個公共點(diǎn),則這樣的直線有()A.1條 B.2條C.3條 D.4條6.已知橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,直線與橢圓的另一個交點(diǎn)為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.7.已知橢圓=1的離心率為,則k的值為()A.4 B.C.4或 D.4或8.已知數(shù)列滿足,令是數(shù)列的前n項(xiàng)積,,現(xiàn)給出下列四個結(jié)論:①;②為單調(diào)遞增的等比數(shù)列;③當(dāng)時(shí),取得最大值;④當(dāng)時(shí),取得最大值其中所有正確結(jié)論的編號為()A.②④ B.①③C.②③④ D.①③④9.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來的一半,則點(diǎn)的對應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點(diǎn)的對應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.10.在平面區(qū)域內(nèi)隨機(jī)投入一點(diǎn)P,則點(diǎn)P的坐標(biāo)滿足不等式的概率是()A. B.C. D.11.已如雙曲線(,)的左、右焦點(diǎn)分別為,,過的直線交雙曲線的右支于A,B兩點(diǎn),若,且,則該雙曲線的離心率為()A. B.C. D.12.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點(diǎn),,,,則異面直線AB與EF所成的角為______.14.若命題“,使得”為假命題,則實(shí)數(shù)a的取值范圍是___________15.若直線與直線平行,且原點(diǎn)到直線的距離為,則直線的方程為____________.16.下圖是個幾何體的展開圖,圖①是由個邊長為的正三角形組成;圖②是由四個邊長為的正三角形和一個邊長為的正方形組成;圖③是由個邊長為的正三角形組成;圖④是由個邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結(jié)論的序號).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.18.(12分)已知函數(shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.19.(12分)各項(xiàng)都為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)求;(3)設(shè),數(shù)列的前項(xiàng)和為,求使成立的的最小值.20.(12分)平面直角坐標(biāo)系中,過橢圓:右焦點(diǎn)的直線交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點(diǎn),若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.21.(12分)已知正三棱柱底面邊長為,是上一點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形(1)證明:是中點(diǎn);(2)求點(diǎn)到平面的距離22.(10分)如圖,在長方體中,,,,M為上一點(diǎn),且(1)求點(diǎn)到平面的距離;(2)求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】采用逐一驗(yàn)證法,根據(jù)總體,個體,樣本的概念,可得結(jié)果.【詳解】據(jù)題意:總體是1100名同學(xué)的總成績,故A正確個體是每名同學(xué)的總成績,故B錯樣本是50名同學(xué)的總成績,故C正確樣本容量是:50,故D正確故選:B【點(diǎn)睛】本題考查總體,個體,樣本的概念,屬基礎(chǔ)題.2、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因?yàn)?,則,由勾股定理得,即,整理得,故.故選:A.3、C【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,再由過點(diǎn),可知雙曲線方程,從而可求離心率.【詳解】由題,設(shè)雙曲線的方程為,又因?yàn)槠溥^,且可知,不妨設(shè),代入,得,所以雙曲線的方程為,所以,同理可得雙曲線的方程為,所以可得,所以,當(dāng)時(shí),結(jié)論依然成立.故選:C4、B【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】由約束條件作出可行域如圖,聯(lián)立,解得,由,得,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最小,有最小值為故選:B5、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時(shí),直線過雙曲線的右頂點(diǎn),方程為,滿足題意;當(dāng)直線的斜率存在時(shí),若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點(diǎn).綜上可得,滿足條件的直線共有3條.故選:C.【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點(diǎn),著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上,可得離心率.【詳解】如圖所示:因?yàn)闉榈妊切危?,又,所以,所以,過點(diǎn)作軸,垂足為,則,由,,得,因?yàn)辄c(diǎn)在橢圓上,所以,所以,即離心率,故選:B.7、C【解析】根據(jù)焦點(diǎn)所在坐標(biāo)軸進(jìn)行分類討論,由此求得的值.【詳解】當(dāng)焦點(diǎn)在軸上時(shí),,且.當(dāng)焦點(diǎn)在軸上時(shí),且.故選:C8、B【解析】求出,即可判斷選項(xiàng)①正確;求出,即可選項(xiàng)②錯誤;求出,利用單調(diào)性即可判斷選項(xiàng)③正確;求出,即可判斷選項(xiàng)④錯誤,即得解.【詳解】解:因?yàn)?,①所以,,②①②得,,整理得,又,滿足上式,所以,因?yàn)?,所以?shù)列為等差數(shù)列,公差為,所以,故①正確;,因?yàn)椋蕯?shù)列為等比數(shù)列,其中首項(xiàng),公比為的等比數(shù)列,因?yàn)?,,所以?shù)列為遞減的等比數(shù)列,故②錯誤;,因?yàn)闉閱握{(diào)遞增函數(shù),所以當(dāng)最大時(shí),有最大值,因?yàn)?,所以時(shí),最大,即時(shí),取得最大值,故③正確;設(shè),由可得,,解得或,又因?yàn)?,所以時(shí),取得最大值,故④錯誤;故選:B9、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.10、A【解析】根據(jù)題意作出圖形,進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.11、A【解析】先作輔助線,設(shè)出邊長,結(jié)合題干條件得到,,利用勾股定理得到關(guān)于的等量關(guān)系,求出離心率.【詳解】連接,設(shè),則根據(jù)可知,,因?yàn)?,由勾股定理得:,由雙曲線定義可知:,,解得:,,從而,解得:,所以,,由勾股定理得:,從而,即該雙曲線的離心率為.故選:A12、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點(diǎn),連結(jié),由分別為的中點(diǎn),可得(或其補(bǔ)角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點(diǎn),連結(jié)由分別為的中點(diǎn),則所以(或其補(bǔ)角)為異面直線AB與EF所成的角由分別是的中點(diǎn),則,又在中,,則所以,又,所以在直角中,故答案為:14、(-1,0]【解析】將題意的命題轉(zhuǎn)化條件為“,”為真命題,結(jié)合一元二次不等式恒成立即可得解.【詳解】因?yàn)槊}“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當(dāng)時(shí),不等式為,符合題意;當(dāng)時(shí),則需滿足,解得;綜上,實(shí)數(shù)的取值范圍為.故答案為:.15、【解析】可設(shè)直線的方程為,利用點(diǎn)到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點(diǎn)到直線的距離為,解得,所以直線的方程為.故答案為:.16、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進(jìn)而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設(shè),幾何體為棱長為的正四面體,該正四面體可放入一個正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設(shè),幾何體為棱長為的正四棱錐,如下圖所示:設(shè),連接,則為、的中點(diǎn),因?yàn)樗倪呅问沁呴L為的正方形,則,所以,,所以,,所以,,,所以點(diǎn)為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設(shè),幾何體為棱長為的正八面體,該正八面體可由兩個共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設(shè),幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)等差數(shù)列的性質(zhì)及題干條件,可求得,代入公式,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用裂項(xiàng)相消求和法,即可求得,即可得證.【詳解】解:(1)設(shè)數(shù)列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數(shù)列的通項(xiàng)公式為:.(2)由(1)可得,所以,故,所以.因?yàn)?,所?【點(diǎn)睛】數(shù)列求和的常見方法:(1)倒序相加法:如果一個數(shù)列的前n項(xiàng)中首末兩端等距離的兩項(xiàng)的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項(xiàng)和可以用倒序相加法;(2)錯位相減法:如果一個數(shù)列的各項(xiàng)是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項(xiàng)之積構(gòu)成的,那么這個數(shù)列的前n項(xiàng)和可以用錯位相減法來求;(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí),中間的一些項(xiàng)可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項(xiàng)公式是由若干個等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時(shí)可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項(xiàng)求和法:一個數(shù)列的前n項(xiàng)和可以兩兩結(jié)合求解,則稱之為并項(xiàng)求和,形如類型,可采用兩項(xiàng)合并求解.18、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點(diǎn)坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)值域斜率的關(guān)系,即可求出,(2)求出導(dǎo)函數(shù)的符號,判斷函數(shù)的單調(diào)性即可得到函數(shù)的極值【詳解】(1)因?yàn)楹瘮?shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點(diǎn)又函數(shù),則所以依題意得解得(2)由(1)知所以令,解得或當(dāng),或;當(dāng),所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是所以當(dāng)變化時(shí),和變化情況如下表:0極大值極小值所以,19、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項(xiàng)公式;(2)化簡,結(jié)合裂項(xiàng)相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因?yàn)楦黜?xiàng)都為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足,當(dāng)時(shí),解得;當(dāng)時(shí),;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當(dāng)為偶數(shù)時(shí),,因?yàn)?,且為偶?shù),所以的最小值為48;當(dāng)為奇數(shù)時(shí),,不存在最小的值,故當(dāng)為48時(shí),滿足條件.20、(1)(2)【解析】(1)設(shè),,的中點(diǎn)為,利用“點(diǎn)差法”求解;(2)由求得A,B的坐標(biāo),進(jìn)而得到的長,再根據(jù),設(shè)直線的方程為,由,求得的長,然后由四邊形的面積為求解.【小問1詳解】解:把右焦點(diǎn)代入直線,得,設(shè),,的中點(diǎn)為,則,,相減得,即,即,即.又,,則.又,解得,,故橢圓的方程為.【小問2詳解】聯(lián)立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀疏矩陣的應(yīng)用課程設(shè)計(jì)
- 有機(jī)農(nóng)產(chǎn)品培訓(xùn)課程設(shè)計(jì)
- 測繪及工程軟件課程設(shè)計(jì)
- 2024年網(wǎng)絡(luò)推廣合同:搜索引擎優(yōu)化服務(wù)
- 2024年裝修粉刷班組專業(yè)勞務(wù)合作合同版
- 2024年招待所物業(yè)租賃及管理合同3篇
- 2024年版國際貿(mào)易協(xié)議履行細(xì)節(jié)與操作指南版B版
- 機(jī)器課程設(shè)計(jì)題目
- 硬筆楷書課程設(shè)計(jì)
- 2024年版工礦企業(yè)產(chǎn)品供應(yīng)合同范本版B版
- 第17講凸二次規(guī)劃的有效集方法課件
- 基于PLC的智能照明控制系統(tǒng)研究(完整資料)
- 2023學(xué)年統(tǒng)編版高中語文選擇性必修中冊第三單元文言文句子翻譯練習(xí)及答案-
- 福建省南平市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃代碼
- 勵志演講講稿
- 附件2.2021年全省文化旅游融合示范項(xiàng)目績效目標(biāo)表
- 金融科技課件(完整版)
- 頂管施工技術(shù)全面詳解
- 超導(dǎo)材料簡介及說明
- 護(hù)士工作量統(tǒng)計(jì)表
- 中價(jià)協(xié)[2013]35號造價(jià)取費(fèi)
評論
0/150
提交評論