吉林省普通高中聯(lián)合體2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第1頁
吉林省普通高中聯(lián)合體2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第2頁
吉林省普通高中聯(lián)合體2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第3頁
吉林省普通高中聯(lián)合體2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第4頁
吉林省普通高中聯(lián)合體2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省普通高中聯(lián)合體2025屆數(shù)學高二上期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.2.已知拋物線的焦點為F,過點F作傾斜角為的直線l與拋物線交于兩點,則POQ(O為坐標原點)的面積S等于()A. B.C. D.3.已知分別表示隨機事件發(fā)生的概率,那么是下列哪個事件的概率()A事件同時發(fā)生B.事件至少有一個發(fā)生C.事件都不發(fā)生D事件至多有一個發(fā)生4.,則與分別為()A.與 B.與C.與0 D.0與5.在直三棱柱中,,且,點是棱上的動點,則點到平面距離的最大值是()A. B.C.2 D.6.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題7.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.8.如圖,某鐵路客運部門設計的從甲地到乙地旅客托運行李的費用c(元)與行李質(zhì)量w(kg)之間的流程圖.已知旅客小李和小張托運行李的質(zhì)量分別為30kg,60kg,且他們托運的行李各自計費,則這兩人托運行李的費用之和為()A.28元 B.33元C.38元 D.48元9.已知,,,若,,共面,則λ等于()A. B.3C. D.910.設雙曲線:的左焦點和右焦點分別是,,點是右支上的一點,則的最小值為()A.5 B.6C.7 D.811.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<112.五行學說是中華民族創(chuàng)造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知p:“”為真命題,則實數(shù)a的取值范圍是_________.14.已知數(shù)列滿足,,若為等差數(shù)列,則___________,若,則數(shù)列的前項和為___________.15.已知雙曲線中心在坐標原點,左右焦點分別為,漸近線分別為,過點且與垂直的直線分別交于兩點,且,則雙曲線的離心率為________16.函數(shù)的圖象在處的切線方程為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,求函數(shù)在區(qū)間上的最大值;(2)當時,求函數(shù)的極值.18.(12分)已知函數(shù)(1)當時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍19.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點到直線的距離為,求實數(shù)k的取值范圍20.(12分)已知拋物線的準線與軸的交點為.(1)求的方程;(2)若過點的直線與拋物線交于,兩點.請判斷是否為定值,若是,求出該定值;若不是,請說明理由.21.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為,且,,成等比數(shù)列(1)求的通項公式(2)求數(shù)列的前n項和22.(10分)已知數(shù)列是首項為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項的和為,且滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.2、A【解析】由拋物線的方程可得焦點的坐標,由題意設直線的方程,與拋物線的方程,聯(lián)立求出兩根之和及兩根之積,進而求出,的縱坐標之差的絕對值,代入三角形的面積公式求出面積【詳解】拋物線的焦點為,,由題意可得直線的方程為,設,,,,聯(lián)立,整理可得:,則,,所以,所以,故選:A3、C【解析】表示事件至少有一個發(fā)生概率,據(jù)此得到答案.【詳解】分別表示隨機事件發(fā)生的概率,表示事件至少有一個發(fā)生的概率,故表示事件都不發(fā)生的概率.故選:C.4、C【解析】利用正弦函數(shù)和常數(shù)導數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C5、D【解析】建立空間直角坐標系,設出點的坐標,運用點到平面的距離公式,求出點到平面距離的最大值.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標第,則,,,設點,故,,.設設平面的法向量為,則即,取,則.所以點到平面距離.當,即時,距離有最大值為.故選:D.【點睛】本題考查空間內(nèi)點到面的距離最值問題,屬于中檔題.6、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D7、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結(jié)合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內(nèi),過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當d取得最大值時,有最小值,結(jié)合圖形易知,當直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.8、D【解析】根據(jù)程序框圖分別計算小李和小張托運行李的費用,再求和得出答案.【詳解】由程序框圖可知,當時,元;當時,元,所以這兩人托運行李的費用之和為元.故選:D9、C【解析】由,,共面,設,列方程組能求出λ的值【詳解】∵,,共面,∴設(實數(shù)m、n),即,∴,解得故選:C10、C【解析】根據(jù)雙曲線的方程求出的值,由雙曲線的定義可得,由雙曲線的性質(zhì)可知,利用函數(shù)的單調(diào)性即可求得最小值.【詳解】由雙曲線:可得,,所以,所以,,由雙曲線的定義可得,所以,所以,由雙曲線的性質(zhì)可知:,令,則,所以上單調(diào)遞增,所以當時,取得最小值,此時點為雙曲線的右頂點,即的最小值為,故選:C.11、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質(zhì),雙曲線的簡單幾何性質(zhì)【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現(xiàn)錯誤12、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)條件將問題轉(zhuǎn)化不等式在上有解,則,由此求解出的取值范圍.【詳解】因為“”為真命題,所以不等式在上有解,所以,所以,故答案為:.14、①.##②.【解析】利用遞推關(guān)系式,結(jié)合等差數(shù)列通項公式可求得公差,進而得到;利用遞推關(guān)系式可知數(shù)列的奇數(shù)項和偶數(shù)項分別成等差數(shù)列,采用裂項相消的方法可求得前項和.【詳解】由得:,解得:;為等差數(shù)列,設其公差為,則,解得:,;由知:數(shù)列的奇數(shù)項是以為首項,為公差的等差數(shù)列;偶數(shù)項是以為首項,為公差的等差數(shù)列;,又,,數(shù)列的前項和,.故答案為:;.【點睛】關(guān)鍵點點睛:本題考查根據(jù)數(shù)列遞推關(guān)系求解數(shù)列中的項、裂項相消法求和的問題;解題關(guān)鍵是能夠根據(jù)遞推關(guān)系式得到數(shù)列的奇數(shù)項和偶數(shù)項分別成等差數(shù)列,由此可通過裂項相消的方法求得所求數(shù)列的和.15、【解析】判斷出三角形的形狀,求得點坐標,由此列方程求得,進而求得雙曲線的離心率.【詳解】依題意設雙曲線方程為,雙曲線的漸近線方程為,右焦點,不妨設.由于,所以是線段的中點,由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:16、【解析】根據(jù)導數(shù)的幾何意義可得,根據(jù)切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2(2)當時,沒有極值;當時,極大值為,極小值為.【解析】(1)當時,,可得:.,,得或,列出函數(shù)單調(diào)性表格,即可最大值;(2),令,得或,分別討論和,即可求得的極值.【詳解】(1)當時,,所以.令,得或,列表如下:-2-11+0-0+極大值極小值由于,,所以函數(shù)在區(qū)間上的最大值為2.(2),令,得或.當時,,所以函數(shù)在上單調(diào)遞增,無極值.當時,列表如下:+0-0+極大值極小值函數(shù)的極大值為,極小值為.【點睛】本題主要考查根據(jù)導數(shù)求函數(shù)單調(diào)性和極值,解題關(guān)鍵是掌握導數(shù)求單調(diào)性的方法和極值定義,考查分析能力和計算能力,屬于中檔題.18、(1);(2)【解析】(1)求出導數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當時,函數(shù),則令,得,,當x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當時,,故單調(diào)遞增,且;當時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關(guān)鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導數(shù)討論單調(diào)性,根據(jù)函數(shù)交點個數(shù)判斷.19、(1)或;(2).【解析】(1)設圓心為,由題意及圓的弦長公式即可列方程組,解方程組即可;(2)由題意可將問題轉(zhuǎn)化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設圓心為,半徑為r,根據(jù)題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個不同的點到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為20、(1)(2)是定值,定值為【解析】(1)由拋物線的準線求標準方程;(2)直線與拋物線相交求定值,解聯(lián)立方程消未知數(shù),利用韋達定理,求線段長,再求它們的倒數(shù)的平方和.【小問1詳解】由題意,可得,即,故拋物線的方程為.【小問2詳解】為定值,且定值是.下面給出證明.證明:設直線的方程為,,,聯(lián)立拋物線有,消去得,則,又,.得因此為定值,且定值是.21、(1);(2)【解析】(1)根據(jù)等差數(shù)列的通項公式,分別表示出與,由等比中項定義即可求得首項,進而求得的通項公式(2)根據(jù)等差數(shù)列的首項與公差,求出的前

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論