版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省溫州市文成縣黃坦中學2023-2024學年中考考前最后一卷數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰直角三角板ABC的斜邊AB與量角器的直徑重合,點D是量角器上60°刻度線的外端點,連接CD交AB于點E,則∠CEB的度數為()A.60° B.65° C.70° D.75°2.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數是()A.4個 B.3個 C.2個 D.1個3.若函數y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>54.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=65.如圖,數軸上的四個點A,B,C,D對應的數為整數,且AB=BC=CD=1,若|a|+|b|=2,則原點的位置可能是()A.A或B B.B或C C.C或D D.D或A6.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山7.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離9.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃10.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,二、填空題(共7小題,每小題3分,滿分21分)11.點G是三角形ABC的重心,,,那么=_____.12.計算(x4)2的結果等于_____.13.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結果保留π)14.不等式組的最大整數解為_____.15.一組數據7,9,8,7,9,9,8的中位數是__________16.如圖,在矩形ABCD中,AB=,E是BC的中點,AE⊥BD于點F,則CF的長是_________.17.方程的解為__________.三、解答題(共7小題,滿分69分)18.(10分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.19.(5分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結果保留π).20.(8分)某街道需要鋪設管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數關系圖象.(1)直接寫出點的坐標;(2)求線段所對應的函數解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.21.(10分)先化簡,然后從﹣<x<的范圍內選取一個合適的整數作為x的值代入求值.22.(10分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)椋ǚ郑?,且,將其按分數段分為五組,繪制出以下不完整表格:組別
成績(分)
頻數(人數)
頻率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
請根據表格提供的信息,解答以下問題:本次決賽共有名學生參加;直接寫出表中a=,b=;請補全下面相應的頻數分布直方圖;若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.23.(12分)已知拋物線經過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側,當,兩點中只有一個點在圖形的內部時,請直接寫出的取值范圍.24.(14分)由于霧霾天氣頻發(fā),市場上防護口罩出現熱銷,某醫(yī)藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
解:連接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故選:D2、B【解析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉化為函數圖象交點問題,利用拋物線頂點證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【點睛】本題是二次函數綜合題,考查了二次函數的各項系數與圖象位置的關系、拋物線對稱性和最值,以及用函數的觀點解決方程或不等式.3、C【解析】
根據函數圖象知:一次函數過點(2,0);將此點坐標代入一次函數的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數y=kx﹣b經過點(2,0),∴2k﹣b=0,b=2k.函數值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數與一元一次不等式.4、D【解析】
本題應對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的提點靈活選用合適的方法.本題運用的是因式分解法.5、B【解析】
根據AB=BC=CD=1,|a|+|b|=2,分四種情況進行討論判斷即可.【詳解】∵AB=BC=CD=1,∴當點A為原點時,|a|+|b|>2,不合題意;當點B為原點時,|a|+|b|=2,符合題意;當點C為原點時,|a|+|b|=2,符合題意;當點D為原點時,|a|+|b|>2,不合題意;故選:B.【點睛】此題主要考查了數軸以及絕對值,解題時注意:數軸上某個數與原點的距離叫做這個數的絕對值.6、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.7、C【解析】
根據圓錐的底面周長等于側面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,
設圓錐的底面半徑是rcm,
則,
解得:.
即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.
圓錐形冰淇淋紙?zhí)椎母邽椋?/p>
故選:C.【點睛】本題綜合考查有關扇形和圓錐的相關計算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:圓錐的母線長等于側面展開圖的扇形半徑;圓錐的底面周長等于側面展開圖的扇形弧長正確對這兩個關系的記憶是解題的關鍵.8、D【解析】
根據兩圓的位置關系、直線和圓的位置關系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關系:設兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內切;當0≤d<R-r(R>r)時兩圓內含.9、B【解析】
求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.
故選B.10、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
根據題意畫出圖形,由,,根據三角形法則,即可求得的長,又由點G是△ABC的重心,根據重心的性質,即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質:三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎題目.12、x1【解析】分析:直接利用冪的乘方運算法則計算得出答案.詳解:(x4)2=x4×2=x1.故答案為x1.點睛:本題主要考查了冪的乘方運算,正確掌握運算法則是解題的關鍵.13、18π【解析】
根據“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關鍵是根據“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.14、﹣1.【解析】
分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,從而得出其最大整數解.【詳解】,解不等式①得:x≤1,解不等式②得x-1>1x,x-1x>1,-x>1,x<-1,∴
不等式組的解集為x<-1,∴
不等式組的最大整數解為-1.故答案為-1.【點睛】本題考查了一元一次不等式組的整數解,解題的關鍵是熟練的掌握一元一次不等式組的整數解.15、1【解析】
將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數,據此可得.【詳解】解:將數據重新排列為7、7、1、1、9、9、9,所以這組數據的中位數為1,故答案為1.【點睛】本題主要考查中位數,解題的關鍵是掌握中位數的定義.16、【解析】試題解析:∵四邊形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中點,過F作FG⊥BC于G,故答案為17、【解析】
兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.三、解答題(共7小題,滿分69分)18、【解析】
根據已知得該三角形為直角三角形,利用三角函數公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.19、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.20、(1)(10,7500)(2)直線BC的解析式為y=-250x+10000,自變量x的取值范圍為10≤x≤40.(3)1250米.【解析】
(1)由于前面10天由甲單獨完成,用總的長度減去已完成的長度即為剩余的長度,從而求出點B的坐標;(2)利用待定系數法求解即可;(3)已隊工作25天后,即甲隊工作了35天,故當x=35時,函數值即為所求.【詳解】(1)9000-150×10=7500.∴點B的坐標為(10,7500)(2)設直線BC的解析式為y=kx+b,依題意,得:解得:∴直線BC的解析式為y=-250x+10000,∵乙隊是10天之后加入,40天完成,∴自變量x的取值范圍為10≤x≤40.(3)依題意,當x=35時,y=-250×35+10000=1250.∴乙隊工作25天后剩余管線的長度是1250米.【點睛】本題考查了一次函數的應用,理解題意觀察圖象得到有用信息是解題的關鍵.21、【解析】
根據分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內選取一個使得原分式有意義的整數作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當x=﹣2時,原式=.【點睛】本題考查分式的化簡求值、估算無理數的大小,解答本題的關鍵是明確分式化簡求值的方法.22、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據第一組別的人數和百分比得出樣本容量;(2)根據樣本容量以及頻數、頻率之間的關系得出a和b的值,(3)根據a的值將圖形補全;(4)根據圖示可得:優(yōu)秀的人為第四和第五組的人,將兩組的頻數相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數分布直方圖23、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】
(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省蘇州市2022-2023學年高二上學期學業(yè)質量陽光指標調研生物試題(原卷版)
- 河北化工醫(yī)藥職業(yè)技術學院《陳設設計》2023-2024學年第一學期期末試卷
- 2025板材展會參展服務合同集錦3篇
- 家教行業(yè)趨勢下的新技能與機遇探討
- 2024離婚協議書:房產過戶與贍養(yǎng)費支付
- 學校體育設施的完善與利用
- 2024年食品包裝設計委托協議書3篇
- 2024汽車貸款發(fā)放標準合同版B版
- 紡織行業(yè)員工績效考核總結
- 二零二五年度保安人員培訓與勞動合同范本3篇
- 2025寒假散學典禮(休業(yè)式)上校長精彩講話:以董宇輝的創(chuàng)新、羅振宇的堅持、馬龍的熱愛啟迪未來
- 安徽省合肥市包河區(qū)2023-2024學年九年級上學期期末化學試題
- 售樓部保安管理培訓
- 2024年高壓電工證理論考試題庫(含答案)
- 2023-2024學年仁愛版七上期末考試英語(試題)
- 2024年醫(yī)院培訓計劃
- 2023年湖南出版中南傳媒招聘筆試真題
- 呼吸內科臨床診療指南及操作規(guī)范
- 學生管理教育課件
- 世界職業(yè)院校技能大賽高職組“關務實務組”賽項參考試題及答案
- 藝術哲學:美是如何誕生的學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論