版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江西省宜春市上高縣二中高一上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.奇函數(shù)在內(nèi)單調(diào)遞減且,則不等式的解集為()A. B.C. D.2.命題“對,都有”的否定為()A.對,都有 B.對,都有C.,使得 D.,使得3.直線與函數(shù)的圖像恰有三個公共點,則實數(shù)的取值范圍是A. B.C. D.4.“x=1”是“x2-4x+3=0”的A.充分不必要條件B必要不充分條件C.充要條件D.既不充分也不必要條件5.已知函數(shù)為上偶函數(shù),且在上的單調(diào)遞增,若,則滿足的的取值范圍是()A. B.C. D.6.下列函數(shù)中,既是奇函數(shù)又在定義域上是增函數(shù)的為A. B.C. D.7.平行四邊形中,若點滿足,,設(shè),則A. B.C. D.8.過定點(1,0)的直線與、為端點的線段有公共點,則k的取值范圍是()A. B.C. D.9.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點,那么異面直線AE與DF所成角的余弦值為A. B.C. D.10.農(nóng)業(yè)農(nóng)村部于2021年2月3日發(fā)布信息:全國按照主動預(yù)防、內(nèi)外結(jié)合、分類施策、有效處置的總體要求,全面排查蝗災(zāi)隱患.為了做好蝗蟲防控工作,完善應(yīng)急預(yù)案演練,專家假設(shè)蝗蟲的日增長率為6%,最初有只,則大約經(jīng)過()天能達到最初的1200倍.(參考數(shù)據(jù):,,,)A.122 B.124C.130 D.136二、填空題:本大題共6小題,每小題5分,共30分。11.已知,用m,n表示為___________.12.寫出一個最小正周期為2的奇函數(shù)________13.函數(shù)的值域是____________,單調(diào)遞增區(qū)間是____________.14.設(shè)函數(shù)f(x)的定義域為R,f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),當(dāng)x∈[1,2]時,f(x)=ax2+b.若f(0)+f(3)=6,則f()=____________.15.如圖,扇環(huán)ABCD中,弧,弧,,則扇環(huán)ABCD的面積__________16.已知sinα+cosα=,α∈(-π,0),則tanα=________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.用定義法證明函數(shù)在上單調(diào)遞增18.已知角終邊與單位圓交于點(1)求的值;(2)若,求的值.19.已知函數(shù)(x∈R,(m>0)是奇函數(shù).(1)求m的值:(2)用定義法證明:f(x)是R上的增函數(shù).20.某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為52,54,58為了預(yù)測以后各月的患病人數(shù),甲選擇的了模型,乙選擇了模型,其中y為患病人數(shù),x為月份數(shù),a,b,c,p,q,r都是常數(shù),結(jié)果4月,5月,6月份的患病人數(shù)分別為66,82,115,1你認(rèn)為誰選擇的模型較好?需說明理由2至少要經(jīng)過多少個月患該傳染病的人數(shù)將會超過2000人?試用你選擇的較好模型解決上述問題21.已知函數(shù)(Ⅰ)求的最小正周期及對稱軸方程;(Ⅱ)當(dāng)時,求函數(shù)的最大值、最小值,并分別求出使該函數(shù)取得最大值、最小值時的自變量的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由已知可作出函數(shù)的大致圖象,結(jié)合圖象可得到答案.【詳解】因為函數(shù)在上單調(diào)遞減,,所以當(dāng)時,,當(dāng),,又因為是奇函數(shù),圖象關(guān)于原點對稱,所以在上單調(diào)遞減,,所以當(dāng)時,,當(dāng)時,,大致圖象如下,由得或,解得,或,或,故選:A.【點睛】本題考查了抽象函數(shù)的單調(diào)性和奇偶性,解題的關(guān)鍵點是由題意分析出的大致圖象,考查了學(xué)生分析問題、解決問題的能力.2、D【解析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【詳解】,都有的否定是,使得.故選:D3、C【解析】解方程組,得,或由直線與函數(shù)的圖像恰有三個公共點,作出圖象,結(jié)合圖象,知∴實數(shù)的取值范圍是故選C【點睛】本題考查滿足條件的實數(shù)的取值范圍的求法,解題時要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運用4、A【解析】將代入可判斷充分性,求解方程可判斷必要性,即可得到結(jié)果.【詳解】將代入中可得,即“”是“”的充分條件;由可得,即或,所以“”不是“”的必要條件,故選:A.【點睛】本題考查充分條件和必要條件的判定,屬于基礎(chǔ)題.5、B【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性解函數(shù)不等式【詳解】是偶函數(shù),.所以不等式化為,又在上遞增,所以,或,即或故選:B6、D【解析】選項,在定義域上是增函數(shù),但是是非奇非偶函數(shù),故錯;選項,是偶函數(shù),且在上是增函數(shù),在上是減函數(shù),故錯;選項,是奇函數(shù)且在和上單調(diào)遞減,故錯;選項,是奇函數(shù),且在上是增函數(shù),故正確綜上所述,故選7、B【解析】畫出平行四邊形,在上取點,使得,在上取點,使得,由圖中幾何關(guān)系可得到,即可求出的值,進而可以得到答案【詳解】畫出平行四邊形,在上取點,使得,在上取點,使得,則,故,,則.【點睛】本題考查了平面向量的線性運算,考查了平面向量基本定理的應(yīng)用,考查了平行四邊形的性質(zhì),屬于中檔題8、C【解析】畫出示意圖,結(jié)合圖形及兩點間的斜率公式,即可求解.【詳解】作示意圖如下:設(shè)定點為點,則,,故由題意可得的取值范圍是故選:C【點睛】本題考查兩點間直線斜率公式的應(yīng)用,要特別注意,直線與線段相交時直線斜率的取值情況.9、C【解析】連接DF,因為DF與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設(shè)正方體的棱長為2,則FD=FD=,由余弦定理得cos∠DFD==.10、A【解析】設(shè)經(jīng)過天后蝗蟲數(shù)量達到原來的倍,列出方程,結(jié)合對數(shù)的運算性質(zhì)即可求解【詳解】由題意可知,蝗蟲最初有只且日增長率為6%;設(shè)經(jīng)過n天后蝗蟲數(shù)量達到原來的1200倍,則,∴,∴,∵,∴大約經(jīng)過122天能達到最初的1200倍.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】結(jié)合換底公式以及對數(shù)的運算法則即可求出結(jié)果.詳解】,故答案為:.12、【解析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.13、①.②.【解析】先求二次函數(shù)值域,再根據(jù)指數(shù)函數(shù)單調(diào)性求函數(shù)值域;根據(jù)二次函數(shù)單調(diào)性與指數(shù)函數(shù)單調(diào)性以及復(fù)合函數(shù)單調(diào)性法則求函數(shù)增區(qū)間.【詳解】因為,所以,即函數(shù)的值域是因為單調(diào)遞減,在(1,+)上單調(diào)遞減,因此函數(shù)的單調(diào)遞增區(qū)間是(1,+).【點睛】本題考查復(fù)合函數(shù)值域與單調(diào)性,考查基本分析求解能力.14、【解析】由f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),可得,,再結(jié)合已知的解析式可得,然后結(jié)合已知可求出,從而可得當(dāng)時,,進而是結(jié)合前面的式子可求得答案【詳解】因為f(x+1)為奇函數(shù),所以的圖象關(guān)于點對稱,所以,且因為f(x+2)為偶函數(shù),所以的圖象關(guān)于直線對稱,,所以,即,所以,即,當(dāng)x∈[1,2]時,f(x)=ax2+b,則,因為,所以,得,因為,所以,所以當(dāng)時,,所以,故答案為:15、3【解析】根據(jù)弧長公式求出,,再由根據(jù)扇形的面積公式求解即可.【詳解】設(shè),因為弧,弧,,所以,,所以,,又扇形的面積為,扇形的面積為,所以扇環(huán)ABCD的面積故答案為:316、.【解析】由題意利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值.【詳解】因為sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因為α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,與sinα+cosα=聯(lián)立解得sinα=-,cosα=,所以tanα=.故答案為:.【點睛】該題考查的是有關(guān)三角函數(shù)恒等變換化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,在解題的過程中,注意這三個式子是知一求二,屬于簡單題目.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、詳見解析【解析】根據(jù)題意,將函數(shù)的解析式變形有,設(shè),由作差法分析可得結(jié)論詳解】證明:,設(shè),則,又由,則,,,則,則函數(shù)上單調(diào)遞增【點睛】本題考查函數(shù)單調(diào)性的證明,注意定義法證明函數(shù)單調(diào)性的步驟,屬于基礎(chǔ)題.18、(1);(2)或.【解析】(1)首先根據(jù)三角函數(shù)的定義,求得三角函數(shù)值,再結(jié)合二倍角公式化簡,求值;(2)利用角的變換,利用兩角和的余弦公式,化簡求值.【詳解】解:由三角函數(shù)定義得,(1)(2)∵∴∴當(dāng)時當(dāng)時19、(1)2(2)證明見解析【解析】(1)因為是定義在R上的奇函數(shù),則,即可得出答案.(2)通過,來證明f(x)是R上的增函數(shù).【小問1詳解】因為函數(shù)是奇函數(shù),則,解得,經(jīng)檢驗,當(dāng)時,為奇函數(shù),所以值為2;【小問2詳解】證明:由(1)可知,,設(shè),則,因為,所以,故,即,所以是R上的增函數(shù).20、(1)應(yīng)將作為模擬函數(shù),理由見解析;(2)個月.【解析】根據(jù)前3個月的數(shù)據(jù)求出兩個函數(shù)模型的解析式,再計算4,5,6月的數(shù)據(jù),與真實值比較得出結(jié)論;由(1),列不等式求解,即可得出結(jié)論【詳解】由題意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真實值,應(yīng)將作為模擬函數(shù)令,解得,至少經(jīng)過11個月患該傳染病的人數(shù)將會超過2000人【點睛】本題主要考查了函數(shù)的實際應(yīng)用問題,以及指數(shù)與對數(shù)的運算性質(zhì)的應(yīng)用,其中解答中認(rèn)真審題,正確理解題意,求解函數(shù)的解析式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024石材行業(yè)知識產(chǎn)權(quán)保護合同5篇
- 2025年外研版選修2地理下冊月考試卷
- 2025年魯教版八年級數(shù)學(xué)上冊階段測試試卷
- 識字3 拍手歌說課稿-2024-2025學(xué)年二年級上冊語文統(tǒng)編版
- 豐富的圖形世界專題練習(xí)
- 2025年西師新版七年級科學(xué)下冊階段測試試卷
- 2025年華師大版八年級科學(xué)下冊階段測試試卷
- 2025年新科版二年級語文上冊階段測試試卷
- 2024年浙教新版選修3物理上冊月考試卷含答案
- 花球啦啦操手位及組合創(chuàng)編 說課稿-2023-2024學(xué)年高一上學(xué)期體育與健康人教版必修第一冊001
- 期末試卷(試題)-2024-2025學(xué)年滬教版三年級上冊數(shù)學(xué)
- 數(shù)學(xué)分析知識點的總結(jié)
- 年會抽獎券可編輯模板
- 靜電場知識點例題結(jié)合
- 道德寶章·白玉蟾
- GB∕T 41170.2-2021 造口輔助器具的皮膚保護用品 試驗方法 第2部分:耐濕完整性和黏合強度
- 防雷裝置檢測質(zhì)量管理手冊
- 水上拋石護坡施工方案
- 燃?xì)忮仩t房和直燃機房防爆問題
- 物料提升機基礎(chǔ)方案
- 840dsl常用參數(shù)
評論
0/150
提交評論