2025屆甘肅省蘭州市甘肅一中數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2025屆甘肅省蘭州市甘肅一中數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2025屆甘肅省蘭州市甘肅一中數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2025屆甘肅省蘭州市甘肅一中數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2025屆甘肅省蘭州市甘肅一中數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆甘肅省蘭州市甘肅一中數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.2.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a3.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.4.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立5.已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是()A. B. C. D.6.在中,,則()A. B. C. D.7.設(shè),則()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.在空間直角坐標(biāo)系中,四面體各頂點坐標(biāo)分別為:.假設(shè)螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.10.已知傾斜角為的直線與直線垂直,則()A. B. C. D.11.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.12.已知,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的單調(diào)增區(qū)間為__________.14.設(shè)是公差不為0的等差數(shù)列的前n項和,且,則______.15.已知等比數(shù)列{an}的前n項和為Sn,若a216.已知數(shù)列的前項和為,且滿足,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.18.(12分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時,求,(用n表示).19.(12分)在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù),α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?0.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.22.(10分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實根為.令若存在,,,使得,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】

兩復(fù)數(shù)相等,實部與虛部對應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.4、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.5、C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時,,所以函數(shù)f(x)在單調(diào)遞減,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時,函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時,滿足題意.當(dāng)a時,函數(shù)f(x)在(0,1)單調(diào)遞增,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價轉(zhuǎn)化,找到了問題的突破口.6、A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.7、C【解析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.8、A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.9、C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.10、D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計算能力,屬于基礎(chǔ)題.11、B【解析】

初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.12、D【解析】

構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對數(shù)式比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號為正時對應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號,本題屬于基礎(chǔ)題.14、18【解析】

將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達(dá)式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質(zhì)以及求和,考查運算求解能力,屬于基礎(chǔ)題.15、-2【解析】試題分析:∵a2考點:等比數(shù)列性質(zhì)及求和公式16、【解析】

對題目所給等式進(jìn)行賦值,由此求得的表達(dá)式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.18、(1),.(2),【解析】

(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡,得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當(dāng)n為偶數(shù)時,在向量的n個坐標(biāo)中,要使得范數(shù)為奇數(shù),則0的個數(shù)一定是奇數(shù),所以可按照含0個數(shù)為:1,3,…,進(jìn)行討論:的n個坐標(biāo)中含1個0,其余坐標(biāo)為1或,共有個,每個的范數(shù)為;的n個坐標(biāo)中含3個0,其余坐標(biāo)為1或,共有個,每個的范數(shù)為;的n個坐標(biāo)中含個0,其余坐標(biāo)為1或,共有個,每個的范數(shù)為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數(shù)列和組合,是一道較難的綜合題.19、(1)當(dāng)時,直線l方程為x=-1;當(dāng)時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】

(1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標(biāo)方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,根據(jù)條件Δ=0,即可求解.【詳解】(1)當(dāng)時,直線l的普通方程為x=-1;當(dāng)時,消去參數(shù)得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標(biāo)方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為或.【點睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)方程化直角坐標(biāo)方程,考查直線與曲線的關(guān)系,屬于中檔題.20、(1)證明見解析,;(2)【解析】

(1)利用,推出,然后利用等差數(shù)列的通項公式,即可求解;(2)由(1)知,利用裂項法,即可求解數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列滿足且可得,即,所以數(shù)列是公差,首項的等差數(shù)列,故,所以.(2)由(1)知,所以數(shù)列的前n項和:==【點睛】本題主要考查了等差數(shù)列的通項公式,以及“裂項法”求解數(shù)列的前n項和,其中解答中熟記等差數(shù)列的定義和通項公式,合理利用“裂項法”求和是解答的關(guān)鍵,著重考查了推理與運算能力.21、(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當(dāng)時,.又由上式得,當(dāng)時,,,.因此不等式(*)均成立.令(),則,(i)若時,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當(dāng)時,此時,,,則需由(*)知,,(當(dāng)且僅當(dāng)時等號成立),所以.②當(dāng)時,此時,,則當(dāng)時,(由(*)知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論