版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山西省新絳汾河中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線過(guò)點(diǎn),且其方向向量,則直線的方程為()A. B.C. D.2.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.3.下列說(shuō)法正確的個(gè)數(shù)有()個(gè)①在中,若,則②是,,成等比數(shù)列的充要條件③直線是雙曲線的一條漸近線④函數(shù)的導(dǎo)函數(shù)是,若,則是函數(shù)的極值點(diǎn)A.0 B.1C.2 D.34.設(shè)函數(shù),,,則()A. B.C. D.5.已知,為雙曲線:的焦點(diǎn),為,(其中為雙曲線半焦距),與雙曲線的交點(diǎn),且有,則該雙曲線的離心率為()A. B.C. D.6.已知直線,,,則m值為()A. B.C.3 D.107.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形8.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項(xiàng)之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱(chēng)為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項(xiàng)分別為2,3,5,8,12,17,23則該數(shù)列的第100項(xiàng)為()A.4862 B.4962C.4852 D.49529.觀察:則第行的值為()A. B.C. D.10.已知雙曲線,過(guò)原點(diǎn)作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點(diǎn),以線段為直徑的圓過(guò)右焦點(diǎn),則雙曲線的離心率為().A. B.C. D.11.1852年英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲,西方人稱(chēng)之為“中國(guó)剩余定理”.現(xiàn)有這樣一個(gè)問(wèn)題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14412.設(shè)O為正方形ABCD的中心,在O,A,B,C,D中任取3點(diǎn),則取到的3點(diǎn)共線的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點(diǎn)處的切線的方程是______.14.已知函數(shù),則曲線在點(diǎn)處的切線方程為_(kāi)__________.15.?dāng)?shù)列中,,,設(shè)(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項(xiàng)和;(3)若,為數(shù)列的前項(xiàng)和,求不超過(guò)的最大的整數(shù)16.橢圓的離心率是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線過(guò)點(diǎn).(1)求拋物線方程;(2)若直線與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),且,求證:過(guò)定點(diǎn).18.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個(gè)頂點(diǎn)坐標(biāo)分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點(diǎn)的坐標(biāo)19.(12分)已知,,分別是銳角內(nèi)角,,對(duì)邊,,.(1)求的值;(2)若的面積為,求的值.20.(12分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點(diǎn)使平面和平面所成角的余弦值為若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.21.(12分)已知數(shù)列的首項(xiàng),且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知.(1)求在上的單調(diào)遞增區(qū)間;(2)已知銳角內(nèi)角,,的對(duì)邊長(zhǎng)分別是,,,若,.求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意和直線的點(diǎn)方向式方程即可得出結(jié)果.【詳解】因?yàn)橹本€過(guò)點(diǎn),且方向向量為,由直線的點(diǎn)方向式方程,可得直線的方程為:,整理,得.故選:D2、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時(shí),y==故選A點(diǎn)睛:研究函數(shù)最值主要根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導(dǎo)公式要記熟3、B【解析】根據(jù)三角函數(shù)、等比數(shù)列、雙曲線和導(dǎo)數(shù)知識(shí)逐項(xiàng)分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數(shù)在上單調(diào)遞減,所以,故①正確,②當(dāng)且時(shí),此時(shí),但是,,不成等比數(shù)列,故②錯(cuò)誤,③由雙曲線可得雙曲線的漸近線為,故③錯(cuò)誤,④“”是“是函數(shù)的極值點(diǎn)”的必要不充分條件,故④錯(cuò)誤.故選:B.4、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進(jìn)而由單調(diào)性得出大小關(guān)系.【詳解】因?yàn)?,所以在上單調(diào)遞增.因?yàn)椋?,而,所?因?yàn)?,且,所?即.故選:A5、B【解析】根據(jù)求得的關(guān)系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關(guān)系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點(diǎn)在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.6、C【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因?yàn)?,且,所以,解得;故選:C7、B【解析】利用誘導(dǎo)公式、兩角和的正弦公式化簡(jiǎn)已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B8、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進(jìn)一步即可得到的值【詳解】2,3,5,8,12,17,23,后項(xiàng)減前項(xiàng)可得1,2,3,4,5,6,所以,所以.所以.故選:D9、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B10、A【解析】設(shè)雙曲線的左焦點(diǎn)為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接、,如下圖所示:由題意可知,點(diǎn)為的中點(diǎn),也為的中點(diǎn),且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.11、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫(xiě)出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A12、A【解析】列出從5個(gè)點(diǎn)選3個(gè)點(diǎn)的所有情況,再列出3點(diǎn)共線的情況,用古典概型的概率計(jì)算公式運(yùn)算即可.【詳解】如圖,從5個(gè)點(diǎn)中任取3個(gè)有共種不同取法,3點(diǎn)共線只有與共2種情況,由古典概型的概率計(jì)算公式知,取到3點(diǎn)共線的概率為.故選:A【點(diǎn)晴】本題主要考查古典概型的概率計(jì)算問(wèn)題,采用列舉法,考查學(xué)生數(shù)學(xué)運(yùn)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),求得,,根據(jù)直線的點(diǎn)斜式方程求得答案.【詳解】因?yàn)椋?,所以切線的斜率,切線方程是,即.故答案為:.14、【解析】對(duì)函數(shù)求導(dǎo),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求得切點(diǎn),由直線的點(diǎn)斜式方程可得所求切線的方程【詳解】函數(shù)的導(dǎo)數(shù)為∴,.曲線在點(diǎn)處的切線方程為,即.故答案為:.15、(1)證明見(jiàn)解析;(2);(3)2021【解析】(1)將兩邊都加,證明是常數(shù)即可;(2)求出的通項(xiàng),利用錯(cuò)位相減法求解即可;(3)先求出,再求出的表達(dá)式,利用裂項(xiàng)相消法即可得解.【詳解】(1)將兩邊都加,得,而,即有,又,則,,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;(2)由(1)知,,則,,,因此,,所以;(3)由(2)知,于是得,則,因此,,所以不超過(guò)的最大的整數(shù)是202116、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析.【解析】(1)運(yùn)用代入法直接求解即可;(2)設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合一元二次方程根與系數(shù)關(guān)系、平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解即可.【小問(wèn)1詳解】由已知可得:;【小問(wèn)2詳解】的斜率不為設(shè),,∴OA→?因?yàn)橹本€與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),所以,即過(guò)定點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.18、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點(diǎn)斜式求直線的方程(2)根據(jù)的面積為5,求得點(diǎn)到直線的距離,再利用點(diǎn)到直線的距離公式,求得的值【詳解】解:(1),,的中點(diǎn)的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點(diǎn)到直線的距離為且解得解得或,點(diǎn)的坐標(biāo)為或19、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關(guān)于角的余弦定理和整理化簡(jiǎn)得,再由的面積,即可求出的值.【小問(wèn)1詳解】由及正弦定理可得.小問(wèn)2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.20、(1)證明見(jiàn)解析;(2)在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn).【解析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內(nèi)過(guò)C作,再以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,利用空間向量計(jì)算判斷作答.【小問(wèn)1詳解】在三棱柱中,四邊形是平行四邊形,而,則是菱形,連接,如圖,則有,因,,平面,于是得平面,而平面,則,由得,,平面,從而得平面,又平面,所以平面平面.【小問(wèn)2詳解】在平面內(nèi)過(guò)C作,由(1)知平面平面,平面平面,則平面,以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,如圖,因,,則,假設(shè)在線段上存在符合要求的點(diǎn)P,設(shè)其坐標(biāo)為,則有,設(shè)平面的一個(gè)法向量,則有,令得,而平面的一個(gè)法向量,依題意,,化簡(jiǎn)整理得:而,解得,所以在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn),使平面和平面所成角的余弦值為.21、(1)證明見(jiàn)解析(2)【解析】(1)化簡(jiǎn)得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯(cuò)位相減求和法求得.【小問(wèn)1詳解】.又?jǐn)?shù)列是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 撥款委托書(shū)構(gòu)建信任的橋梁3篇
- 安裝工程委托書(shū)編寫(xiě)要點(diǎn)3篇
- 放棄保證書(shū)中的放棄義務(wù)解讀3篇
- 安徽能源行業(yè)工程師勞動(dòng)合同樣本3篇
- 安裝室內(nèi)門(mén)合同3篇
- 斷橋鋁門(mén)窗設(shè)備采購(gòu)合同書(shū)3篇
- 設(shè)計(jì)公司內(nèi)部硅藻泥裝飾協(xié)議
- 企業(yè)員工福利足療師聘用協(xié)議
- 設(shè)立公司協(xié)議
- 水泥生產(chǎn)筒倉(cāng)建設(shè)協(xié)議
- iSCM-TMS智能運(yùn)輸管理系統(tǒng)課件
- 硬筆書(shū)法全冊(cè)教案共20課時(shí)
- 光伏扶貧項(xiàng)目可行性研究報(bào)告
- 深信服adesk桌面云方案測(cè)試
- PDCA降低I類(lèi)切口感染發(fā)生率
- 弘揚(yáng)兵團(tuán)精神做兵團(tuán)傳人課件
- 數(shù)控車(chē)床上下料機(jī)械手設(shè)計(jì)說(shuō)明書(shū)
- 2022年高考全國(guó)甲卷語(yǔ)文試題評(píng)講課件55張
- 學(xué)校學(xué)生在校證明word模板
- 場(chǎng)內(nèi)叉車(chē)安全培訓(xùn)
- 不銹鋼項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
評(píng)論
0/150
提交評(píng)論