Introduction to Finance 財務管理講義x_第1頁
Introduction to Finance 財務管理講義x_第2頁
Introduction to Finance 財務管理講義x_第3頁
Introduction to Finance 財務管理講義x_第4頁
Introduction to Finance 財務管理講義x_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PAGE

1

ModuleOne

Module01:IntroductiontoFinance

Topic1.1:WhatisFinancialManagement?

FinancialDecisions

Financialmanagementisconcernedwithdevelopinganalyticalskillstohelpmanagersmakebetterfinancialdecisions.Thesefinancialdecisionsare:

TheInvestmentDecision:Theevaluationofinvestmentprojects–whatprojectstoinvestin?Thisprocessissometimescalled“CapitalBudgeting”.

TheFinancingDecision:Wheretoobtainfundsfrom-Thetypeoffunds-Thecostoffunds-Whentoraisefunds-Howmuch?

TheDividendDecision:Increaseordecrease–howmuchtopayout-availabilityofcashtopayout–dividendsorcapitalgains.(TheDividendDecisionissometimesviewedaspartoftheFinancingDecisionandsometimesreferredtoasthePayoutDecision)

Theinvestment,financinganddividenddecisionsarelinkedbytheflowofcashthoughthefirm.Thesedecisionsareinterrelatedinthefollowingway:

CashInflows = CashOutflows

Themainsourcesoffundsarefromraisingnewcapitalbyborrowingorbytheissueofnewequity,andthenetcashflowsfromoperations.Sowedividethemintoexternalfundingandinternalfunding.Usesoffundsaredividedintoinvestmentsanddividends.

NewFunds + CashProfits = Investments + DividendF + X = I + D

ExternalFinancing[F]PlusInternalFinancing[X]=Investment[I]PlusDividend[D]

Where

F=externalfinancingviaeitherdebtorequity.

X=internalfinancingusingcashflowsgeneratedfrompreviousinvestments(retainedearnings).

I=cashoutlayforinvestmentsinassets,projects,etc.

D=cashdistributionstotheownersgenerallyintheformofdividends.

Bydefinition,cashinflowswillequalcashoutflowsforanytimeperiod.Wecannotchangeoneitemwithoutaffectingatleastoneotherintheequation.Thereforethedecisionsareinterrelatedandshouldbesolvedsimultaneously.

Considerthefollowingexample.Acompanyhasnetcashflowsfromoperationsof

$100m.Shareholderswereinformedthattheycouldexpectadividendtotalling$20minthisperiod.Thecurrentlevelofexternalfinancingiszerobutmanagementisnowinvestigatingaveryprofitableproject,whichneedsaninvestmentof$150m.

CashOutflowsare$150mininvestmentand$20mindividends.CashInflowsare$100mininternalfunding.

0+100m150m+20m

Thisisnotinbalance.Inflowstotal$100mandoutflowstotal$170m.Inordertomeetthecommitmentofacceptingtheprofitableinvestmentandpayingthedividendmanagementmustfindanextra$70minfunding.Theywillneedtoraisefundseitherbyborrowingorissuingnewequity.

TheFinanceFunction

SourceofFunds

Objectives

UseofFunds

Thefinancefunctioninvolvesthefinancialmanagerraisingfundsandusingthemtoaddvaluetothefirm.Sincemanagersendeavourtomakedecisionsthatincreasevaluetheyneedtoknowhowtomeasuretheimpactoftheirfinancialdecisionsonvalue.

Thecorrectdecisionscanonlybedeterminedinlightofthestatedobjectives.Toensuretheefficientandeffectivesourcingandutilisationoffunds,theobjectivesofthefirmmustbeconsidered.Inthisunitweadopttheobjectiveofmaximisingthemarketvalueofthefirm.Becarefulhere,maximisingaccountingprofitormaximisingreturnoninvestmentdoesnotalwaysmaximisevalue.Thispointwillbedemonstratedatvariouspointsthroughoutthecourse,especiallyinmodulefour.

Manyotherobjectivesofthefirmhavebeencanvassedintheliterature.Althoughthisisaninterestingissueitisnotonethatwewillpursueinthisunit.OneissuethatwillbecoveredbrieflyistheAgencyRelationship(seeSection1.5.8ofPBEHP.

TheConceptualFramework

ChapterTwoofyourtext,mostofwhichissetaslightreading,developsthetheoryofthefirmanddemonstrateshowwemightarriveatoptimalinvestment,financinganddividenddecisions.Thedecisionrulesderivedinthischapterareanessentialpartoftheconceptualframeworkoffinance.Soeventhoughwedonotstudythischapterindepthwerelyonitsconclusionsasastartingpointinourventureintotherealmoffinance.Themoreadventurousstudentsareinvitedtostudythischapterinmoredepth.

Insummary,thechapterconcludesthatundercertainrestrictiveconditions(perfectmarkets,perfectcertainty,notaxes,rationalinvestors,andnofrictions)thethreefinancialdecisionsareresolvedasfollows:

InvestmentDecisionSolution:

Takeallprojectsthataddvalue.StatedanotherwaythisgivesustheNetPresentValuerule,whichsaystakeallprojectsthathaveapositivenetpresentvalue(NPV)andrejectthosethathaveanegativenetpresentvalue.Analternateformistotakeallprojects,whichgiveareturngreaterthanthecostoffundsandrejectthosethatdonot.

FinancingDecisionSolution

Fundallprofitableprojects(allprojectsthataddvalue).Thesourceisirrelevant.Thatis,providedthatyouoptimisetheinvestmentdecisionbyfundingallprofitableinvestments,thequestionofwhereyoufinancefrom(debtvequity)makesnodifference.Ofcoursethisconclusionassumesthatweareoperatinginahighlycompetitivemarket.

DividendDecisionSolution

Providedthattheinvestmentandfinancingdecisionsareoptimisedthedividenddecision(dividendsvcapitalgains)isirrelevant.

ThesethreepoliciesarecoveredinChapter2ofthetext.

“Ifeverythingintherealworldoffinancewasthatsimplewecouldfinishourcourseinfinancehereandnow”Ihearyousay.

Myresponseis“yes,youareright”.

TheassumptionsusedinthemodeldevelopedinChapterTwoareveryrestrictiveanddonotreflecttherealworld.However,aswedevelopourconceptualframeworkwewillmovetomorecomplexmodels,whichprovidesolutionsthatareveryusefulandapplicabletotherealworldoffinance.Thereasonwestartwithasimplemodelissothatwecaneasilysee,whichvariablesorfactorsareimportant.Thiswillensurethatwearenotside-trackedintoaflawedanalysis.

Topic1.2The“FinancewayofThinking”andtheThreeLessonsofFinance

Thethemeofthisunitisthatbusinessesexisttocreatevalue.Ifafirmdoesnotcreatevaluecompetitionwillsoonforceitoutofbusiness.Weneedtoaddressquestionssuchas“Whatisvalueandhowisitcreated?".Inordertodothiswemustunderstandthethreebasicideasoffinancethatformtheconceptualframeworkandhelpusapplythe“FinancewayofThinking”

Thethreebasicideasare:

Timevalueofmoney

Arbitrage,and

Diversification

Throughoutourjourneyintothescience(orshouldIcallitthediscipline)offinancewewillregularlyreferbacktotheseideastohelpusresolveissuesandproblemsintheapplicationofourdiscipline.A“neat”explanationoftheseideascanbefoundonpage140ofRoss,Christensen,Drew,Thompson,WesterfieldandJordan,“FundamentalsofCorporateFinance”,2011,5thEdition,McGrawHill.

Thelogicissimple.Inanyvaluationprocesswewouldneedtoperformsomesortofcostbenefitanalysisinordertoseeifsomeactionaddsvalue.

Calculate/forecastthebenefits

Calculate/forecastthecosts

Comparethetwo

Ifbenefitsexceedthecoststheactionaddsvalue

Itiscontendedherethatbeforethecostsandbenefitscanbeevaluatedproperly,timevalueofmoney,arbitrageanddiversificationmustbeconsidered.

Beforemovingontothesethreebasicideas,herearesomedefinitionsandconcepts.

“FinanceHat”

Infinanceandeconomicsweuseadifferentmeasureofprofitfromthatusedinotherdisciplines.Thoseofyouwhohaveworkedorstudiedaccountingand/ortaxationwillneedtoadjustyourwayofthinkingbeforesolvingfinancialproblems.

Whendoingaccountingworkputonyour“AccountingHat”Whendoingtaxputonyour“TaxationHat”

Whensolvingfinanceproblemsputonyour“FinanceHat”Agoodexampleisdepreciation:

Infinancewedonotincludedepreciationasacostinourcost/benefitanalysisbecauseitisnotconsideredtobearelevantcashflowforvaluationpurposes.The

initialcostofourinvestment(asset)isconsideredasanupfrontcashflowratherthanacosttobeapportioned(depreciated)overthelifeoftheasset.

Inaccountingdepreciationisincludedasacosttobedeductedfromrevenuetogettheprofitfigure.

Fortaxationpurposes,depreciationiscommonlyanallowablededuction.However,theamountallowablemaydiffersignificantlyfromthatusedforaccountingpurposesandfromthedeclineineconomicvalueoftheasset.

Anotherexampleistherecognitionofcapitalgains.Foraccountingandtaxationpurposesacapitalgainisnotrecogniseduntilrealised(untiltheassetissold).Infinancewerecogniseacapitalgain(orloss)assoonasachangeinvalueoccurs.

Theunderstandingoffinancerequiresalittlebitof“l(fā)ateralthinking”onyourpart.Youwillcomeacrosstransactionsthatdonotappeartomakesensetothe“l(fā)ayperson”.Agoodexampleissellingsomethingthatyoudonothave–“goingshort”.Iwillleavetheexplanationofthistransactiontoalaterstageinthisunit.

Activity1.1

Lookupshortsellingandbepreparedtodiscussthesignificanceofthistransactioninclassnextweek.Try

.

Return

Infinanceweviewreturnsorprofitsasbeingmadeupoftwoparts:

Acashflowstream–normallyadividend,rentorinterestpayment,and

Acapitalgainorlossfromtheincreaseordecreaseinvalue.

Againdifferentapproachesareusedtomeasureprofitdependingonwhetherwearemeasuringeconomicreturns,accountingprofitortaxableincome.

Hereisanexampleofthecalculationofreturn.SupposewepurchasedashareinTelstraatthebeginningoftheyearfor$3.40.Weholdtheshareforoneyearanditspricerisesto$4.45attheendoftheyear.Duringtheyearwereceivedadividendof55cents.Wedonotselltheshare,asitisourintentiontoholditforafewyears.

Ourreturnismadeupof55centsindividendsand$1.05incapitalgain.Eventhoughwehavenotsoldtheshare,infinancewerecognisethecapitalgain.Contrastthiswiththeaccountingandtaxationpositions,whichdonotrecogniseacapitalgainuntilitisrealised(i.e.theshareissold).

Thetotaldollarreturnis$1.60.Tocalculatetheannualreturnasapercentagewedividethedollarreturnbythepriceatthebeginningoftheperiodinquestion.Inthiscasethepricewas$3.40.

Returnequals1.60/3.40giving47.06%pa.Thatwouldbenice,wouldn’tit?

Thisexamplemeasuresthehistoricoractualreturn.Wecanalsoconsiderreturninaforwardlookingsense.ForexampleifwebuyashareinBHPtodaywiththeintentionofholdingitforoneyear,whatreturncanweexpecttomakeovertheyear(expectedreturn)?OnewaywouldbetoprojectthepriceforBHPattheendoftheyearandmeasurethereturnasapercentageincrease.

Formulawithoutdividends

rC1C0

C0

Formulawithdividends

rC1D1C0

C0

Where:

r=return

C0=cashfloworvalueatthebeginningoftheperiodC1=cashfloworvalueatendofperiod

D1=dividendpaidatendofperiod

WealsomakethedistinctionbetweenNominalReturnsandRealReturns.SeeSection1.5.4ofPBEHP.

Activity1.2

Lookupthedefinitionsofnominalinterestratesandrealinterestratesandbepreparedtodiscusstheirrelationshiptoexpectedinflationinclass.

MarketValues

Anotherdifferenceisthatinfinanceweusemarketvalueswhereverpossibleinpreferencetobookvalues.

Thefollowingequalitywillbecommonlyreferredto:A = E + D

or

V = E + D

Themarketvalueofthefirm’sassetsisequaltothemarketvalueofthefirm’sequityplusthemarketvalueofthefirm’sdebt.

ThoseofyouthathavestudiedaccountingwillrecognisethisequationasbeingsimilartotheAccountingEquationusedinelementaryaccounting.Themajordifferenceisthatinfinanceweusecurrentmarketvalues,whereasaccountinguseshistoricorbookvalues(originalcost).

TimeValueofMoney

AssumethatyourfirmisinvestigatinganoilandgasprojectontheNorthWestShelfwiththefollowingsetofcashflows(inbillions$):

Year

0

1

2

3

25

CashFlow

(10)

1.0

1.0

1.0

1.0

1.0

Theprojectrequiresanoutlayof$10billionnow(time0)andpromisestogivecashflowreturnsof$1.0billionattheendofeachyearfor25years.Assumethatinvestorsinthemarketrequireareturnof10%paforthistypeofproject(thisrateissometimesreferredtoasthe“opportunitycostsoffunds”or“thecostofcapital”).

IfthenumbersarefamiliaritisbecausetheexampleisbasedonthesaleofgasfromtheNorthWestShelf(NWS)toChina,announcedinabout2002.Thenumbersarefictitious.

Shouldthefirmaccepttheproject?

Weaskthequestion,“Doestheprojectaddvaluetothefirm”?

Asimpleapproachwouldbetocomparethecostswiththebenefits.Costs: $10billion

Benefits: $25billion(25yearsat$1billion)Netbenefit: $25b–$10b=$15billionprofit

Thatshouldpaysomehandsomesalaries;buyafewFerraris,severalbeachfrontvillas,asuperyacht,aprivatejet,theoddtriptothemoonandrealestateonMars.

Unfortunately,ifyouannouncedthatyourfirmwastakingthisproject,thevalueofyourshareswouldfall.

Thereasonisthatyouhaveignoredthetimevalueofmoneyandtheopportunitycostoffunds.Animportantcosthasbeenomitted.Youarecomparing“appleswithoranges”.

NetPresentValue

InfinanceweevaluatesuchprojectsbycalculatingtheNPV(NetPresentValue)acost/benefitanalysis,whichatthesametimeadjustsforthetimevalueofmoney.

NPV=-InitialInvestment+thesumofthepresentvaluesofallfuturecashflows.

NPVInitialInvestment

CFt

t11it

Wedothecalculationusingtheformulaabove;moreaboutthislaterintheunit(Module04).

AtthisstageacceptmywordthattheNPVofourprojectis:

-$10b+$9.08b=-$0.92bThatis,thecostsequal$10b.

Thepresentvalueofthebenefitsis$9.08b.Afteradjustingforthetimevalueofmoneyattenpercent,$1bperyearfor25yearsisworth(equivalentto)only$9.08battimezero(now).

Overallthenetbenefitisnegative,andtheprojectwouldthereforecauseadropinvalueifitweretobeaccepted.

IfNPVmeasureschangeinvalue,thissuggestsarulefortheinvestmentdecision.ThefirmshouldtakeallprojectswithapositiveNPVandrejectallprojectswithanegativeNPV.Soundsfamiliar,thisiscalledtheNPVrule.

Arbitrage

Twoassetswiththesameriskandwhichproducethesamecashflowsshouldhavethesamevalue.Financialmarketsarehighlycompetitive.Therearemillions(perhapsbillions)ofinvestorsandplayersinthemarketlookingforprofitableopportunities.Iftwoassetswiththesamecashflowswerevalueddifferentlythenanopportunitytoprofitwithzeroriskwouldarise.Tradingonthistypeofopportunityisreferredtoasarbitrage.Arbitragewillquicklybringtheassetvaluesintobalance.

Takethisverysimpleexample.SupposethatatthesamepointintimeyounoticedthatsharesinBHPweresellingfor$A14inSydneyandat$A20inNewYork.Couldyouarbitragethis?

Yes!“Youbeauty,amoneymachine”!

YouwouldsimultaneouslybuyinSydneyat$14andsellinNewYorkfor$20,making$6profitpersharesoldlessthecostoftransacting.Ofcourseifthisimbalanceweretooccur,itwouldnotlastforlong,becauseeveryoneelseinthemarketwouldattempttoarbitrage.Thepriceswouldveryquicklycomebackintobalance.

Arbitrageisaverypowerfulideaandhasmanyapplicationsinvaluation.Giventhataddingvalueisthenameofthegame,weneedtounderstandhowcompetitivemarketsbehave.

Diversification

Wehaveallheardthehomily“donotputallyoureggsinonebasket,(lestthebasketfallandyoubreakallyoureggsatonce)”orsomethingtothateffect.Thisisgoodadviceintheworldoffinance.Giventhatmost,ifnotallinvestorsareriskaverse,itpaystodiversify.

Diversificationprovidesthepotentialtoreduceriskwithoutdecreasingreturns.Thefollowinggraphdemonstratesthis.Wemeasurethetotalriskofaninvestmentusingthestandarddeviationofexpectedreturns.Itturnsoutthatsomeofthistotalriskisdiversifiableandcanberemoved.Thiscomponentisreferredtoasdiversifiablerisk(orasnon-systematicrisk).

Noofassets

Keepingreturnconstant

systematicrisk

unsystematicrisk

TotalRisk

Diversification

TOTALRISK=SYSRISK+UNSYSRISK

Asweaddmoreandmoreassetstoourportfoliototalriskreduces(followtheblueline).But,notethatitdoesnotfullydisappear.Thereissomeresidualriskleft.Thisisreferredtoassystematicriskornon-diversifiablerisk.Giventhatthisriskcannot

PAGE

10

ModuleOne

bediversifiedaway,riskaverseinvestorswillwanttobecompensatedforsystematicrisk.

Thefactthat(intherealworld)investmentsarenotallperfectlycorrelatedwitheachother,allowsriskreductionviadiversification.Riskaverseinvestorsseektoavoidriskandiftheycannot,theywishtobecompensatedforit.

Thehigherthesystematicriskthehigherthereturnrequiredtocompensateforthatrisk.JustconsiderAustraliangovernmentbonds.Thesearefairlysafe(almostriskfree)andprovideareturn(yield)ofabout4%pa.Wouldyoutakeonariskyinvestmentthatproducedonly4%pa?

No!Youcanmake4%withnoriskbyputtingyourmoneyingovernmentbonds.

Activity1.3

Lookupthecurrentrate(yield)forten-yeargovernmentbondsinthenewspaperandbepreparedtodiscussthesignificanceofthisnumberinclass.

Topic1.3TimeValueofMoneyandtheMathematicsofFinance

Moneyhasatimevalue,andisgenerallyexpressedintermsofitsreceiptwithearlierreceiptsbeingbetterthanlaterones.Eveniftherewerezeroinflation,mostpeoplewouldprefertohave$1000intheirpocketnow,ratherthaninoneyear’stime.

Followingthislineofreasoning,itislogicalthatifapersonistoreceiveaseriesofcashflowsondifferentdates,thevalueofthosecashflowscannotbecalculatedsimplybyaddingthem.Thevalueof$1000receivedtoday,plus$1000tobereceivedattheendoftheyearplus$1000tobereceivedattheendoftwoyears,isnot

$3000,butisalesseramount.

Acashflowline

Thisexamplecanbedepictedusingthefollowingdiagramorsomevariationofit.Itisagoodideatodrawsomesortofdiagramtodepicttheproblemathand.Thishelpsthestudenttovisualisetheproblemandassistsinthesolution.Herewehaveusedacashflowline.

0 1 2 3

1000 1000 1000

Thisseriesofcashflowswhenaddedtogethergiveatotalof$3000,buttheyarenotworth$3000now.Whataretheyworth?

Thevalueisgivenbythefollowingformula:

PresentValue10001000

1000

(1r) (1r)2

Where“r”istheinterestrateexpressedasadecimal.Thevaluewillalwaysbelessthan$3000(iethesumofthecashflows).

Ifr=10%thenthepresentvalueis$2735.54.

PresentValue100010001000

(1.1) (1.1)2

Anotherfactorrelatingtotheutilityofmoneyisrisk.Anamountof$110,000inthefuturemayseemmoreusefulthananamountof$100,000today,butwhatisthelikelihoodofreceivingthatmoney?Othereventscouldtakeplacethatcouldmeanthatapersonreceivednothinginthefuture,butcouldhaveenjoyedthe$100,000today.Withmoney,thereisprobablynosuchthingascertainty.Therearedifferentratesofreturnanddifferentlevelsofrisksfordifferenttypesofinvestment,buta

commondenominatoristhatthegreaterthereturnoninvestment,thegreatertheriskingettingthatreturn-moreaboutthislaterintheunit.

Soweneedtoadjustfortimevalueofmoney.Howdowedothis?WeuseaseriesofcalculationsthatcomeundertheheadingofFinancialMathematics.Financialmathematicsincludesthewiderangeofcalculationsthatunderliethemulti-trilliondollarfinanceindustry.

Herearesomefundamentalconceptsunderpinningfinancialmathematics:

Cashflows–Payments(outflows)orreceipts(inflows)ofmoney(cash)–outflowsareshownasnegativeusingeitheraminussignorbrackets;

Rateofreturn–Therelationshipbetweenthecashinflowsandcashoutflows;

Marketyieldorrate–therateofreturnoryieldwhichequatesthefuturecashflowswiththepriceofthefinancialinstrumentinquestion(establishedbymarketforces);

Timingconvention(cashflowsareassumedtooccuratapointintime,witht=0representingnow,andt=1representingtheendofthefirsttimeperiod,t=2endofsecondtimeperiod,andsoon;

Couponrate–Thecontractedrateofpaymentondebtandotherfinancialinstruments;

Financialcontracts–whereamountstobereceivedandtobepaidareagreed.

Theseareadequatelycoveredinthetext.

Financialanalysisanddecisionmakingrequiresacompetentunderstandingandapplicationoffinancialmathematics.Studentsshouldrefertothetexttocompiletheirownlistofformulasusedinfinancialmathematicsasappliedinthisunit.Itshouldbenotedthatdifferenttextbooks(anddifferentlecturers)useslightlydifferentwaysofexpressingtheseformulas–thereisnostandardisation,andstudentsneedtodeveloptheirownexpressionsorbecomefamiliarwiththeformulasprovidedbytheteacherforexampurposes.

Studentsshouldbecarefulwhencompilingthislist,asfontsusedbydifferentcomputers,versionsofsoftware,andprinterdrivers,torepresenttheformulasina“wordprocessed”documentmaynotalwaysbereliablyreproduced.

Asummaryoftheformulasusedinthesenotesmaybefoundattheendofeachmodule.

Inthisunit,attentionisgiventothefollowingcalculations:

Return(coveredabove)

SimpleInterest

CompoundInterest

PresentValue

FutureValue

EffectiveInterestRates

PresentandFutureValuesofAnnuities

PresentValueofPerpetuities

PresentValueofGrowingPerpetuities

Thefirstfiveitemsarecoveredinthismodule.TheothersareintroducedhereandcoveredindepthinModuleTwo.

Thefollowingsymbolswillbeusedthroughoutthematerialthatfollows:NPV=netpresentvalue

V=valueofthefirm

D=valueofdebt

E=valueofequityr=requiredreturn

C0=cashfloworvalueattime0C1=cashfloworvalueattime1CFt=cashflowattimet

D1=dividendattime1

FV=futurevalueoraccumulatedamountPV=presentvalueorprincipal

i=interestrate(youmayfind“r”and“k”alsobeinguseddependingonthecontext)n=numberoftimeperiods

t=timeperiodrangingfromt=0tot=n

jm=nominalannualratecompounded“m”timesperyearEAR=effectiveannualrate

Inthesenotesformulaswillbeprovidedwithoutproofs.Thosewithamathematicalbentmayliketocheckthederivationofalloftheformulasandsolvetheequationsfordifferentsituations.Thiswillhelpyouunderstandwhatyouaredoing.Theminimumrequirementisthatyouareabletosolvetheseproblemsusingaformulaandacalculator.Thetextbookhastablesatthebacktoassistwithcalculations.Studentsneedtobecompetentintheoperationsofthefinancialcalculatorsufficientlywelltobeabletoquicklycalculatetheanswerinanexam.

Studentsareencouragedtolearntousetheirfinancialcalculatorsasquicklyaspossible,andarepermittedtobringthemintotheexam.YoushouldalsolearnhowtodothesecalculationsusingthefinancialfunctionsinExcel.AsaguideastotestwhetheryouhaveyouhavemasteredthistopicyoushouldbeabletodoallofthequestionsatthebackofChapterThreeofthetextbookwithoutlookingatthesolutions.

SimpleInterest:SeeSection3.3ofPBEHP

Simpleinterestiswhereinterestovertheentireperiodoftheagreementorloaniscalculatedontheoriginalamountofprincipal.Thisisinfrequentlyusednowadaysincommercialsituations,butoftenformsthebasisofprivatefamilyloansandlessformalagreements.

Theformulais:

FV=PV(1+in)

Example:

Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pasimpleinterest?

Solution:

PV=$1000

n=2yearsi=10%pa

FV=tobecalculated

FV=PV(1+in)

FV=1000(1+.1x2)=1000(1.2)=1200

Fromnowonyouassumethatacompoundinterestcalculationisrequiredunlessspecificallyinstructedotherwise.

CompoundInterest:SeeSection3.4ofPBEHP

Interestoninterest.Compoundinterestiswhereinterestiscalculatedeachperiodontheprincipalamountandonanyaccruedinteresttothatpointintime.Thisiscommonlyusedforloansandinvestments.Itisimportanttoknowthefrequencyofcompoundingaswellasthestatedinterestrate,asthiscanhaveahugeimpactonbothperiodicrepaymentsorreceiptsandthetotalamountpaidovertheperiodoftheagreement.Note:Whenthereisonlyonecompoundingperiodthenbothsimpleinterestandcompoundinterestapproachesproducethesameresult.

Theformulais:

FV=PV(1+i)n

Example:

Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pacompoundedannual?

Solution:

Compoundedannually,meansthatinterestisaddedtotheaccountattheendofeachyear.

PV=$1000

n=2yearsi=10%pa

FV=tobecalculated

FV=PV(1+i)n

FV=1000(1.1)2=1000x1.21=$1210

NominalversusEffectiveRates(nottobeconfusedwithNominalvReal)

Itisalsoimportanttounderstandthedifferencebetweennominalandeffectiveinterestrateswhencalculatingeitherrepaymentsorreceipts,astheeffectiveinterestrateistheonethattakesaccountofthefrequencyofthecompounding.Thetotalamountofinterestpaidorreceivedisgreaterasthenumberofcompoundingperiodsisincreased.Inpracticeitisusualtoquotethenominalinterestrate.Forexample,myhousingloanhasaninterestrateof6%pa.Butthebankchargesinterestonamonthlybasis(thatistheyaddinteresttomyaccounteverymonth).Theeffectiveannualrateforthisloanis6.17%.Accuratetoonebasispoint.

Thecalculationoftheeffectiveinterestrateshouldbeusedbeforecomparingdifferentloansorinvestmentproductswithdifferentnominalinterestratesanddifferentcompoundingperiods.HerewewillcallthisratetheEffectiveAnnualRate(EAR).[AER=AnnualEffectiveRateisalsocommonusage]

Theformulais:

jm

EAR1m1

m

Example:

Polybankoffersabankcardfacility(Polycard)toitscustomersandadvertisesarateof18%pabutwiththeinterestaddedtotheaccounteverymonth.WhateffectiveannualrateisPolybankchargingitscustomers?

Solution:

jm=.18(18%)

m=12(monthly)

.1812

12

EAR1 1

EAR=19.56%

(SeeSection

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論