版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGE
1
ModuleOne
Module01:IntroductiontoFinance
Topic1.1:WhatisFinancialManagement?
FinancialDecisions
Financialmanagementisconcernedwithdevelopinganalyticalskillstohelpmanagersmakebetterfinancialdecisions.Thesefinancialdecisionsare:
TheInvestmentDecision:Theevaluationofinvestmentprojects–whatprojectstoinvestin?Thisprocessissometimescalled“CapitalBudgeting”.
TheFinancingDecision:Wheretoobtainfundsfrom-Thetypeoffunds-Thecostoffunds-Whentoraisefunds-Howmuch?
TheDividendDecision:Increaseordecrease–howmuchtopayout-availabilityofcashtopayout–dividendsorcapitalgains.(TheDividendDecisionissometimesviewedaspartoftheFinancingDecisionandsometimesreferredtoasthePayoutDecision)
Theinvestment,financinganddividenddecisionsarelinkedbytheflowofcashthoughthefirm.Thesedecisionsareinterrelatedinthefollowingway:
CashInflows = CashOutflows
Themainsourcesoffundsarefromraisingnewcapitalbyborrowingorbytheissueofnewequity,andthenetcashflowsfromoperations.Sowedividethemintoexternalfundingandinternalfunding.Usesoffundsaredividedintoinvestmentsanddividends.
NewFunds + CashProfits = Investments + DividendF + X = I + D
ExternalFinancing[F]PlusInternalFinancing[X]=Investment[I]PlusDividend[D]
Where
F=externalfinancingviaeitherdebtorequity.
X=internalfinancingusingcashflowsgeneratedfrompreviousinvestments(retainedearnings).
I=cashoutlayforinvestmentsinassets,projects,etc.
D=cashdistributionstotheownersgenerallyintheformofdividends.
Bydefinition,cashinflowswillequalcashoutflowsforanytimeperiod.Wecannotchangeoneitemwithoutaffectingatleastoneotherintheequation.Thereforethedecisionsareinterrelatedandshouldbesolvedsimultaneously.
Considerthefollowingexample.Acompanyhasnetcashflowsfromoperationsof
$100m.Shareholderswereinformedthattheycouldexpectadividendtotalling$20minthisperiod.Thecurrentlevelofexternalfinancingiszerobutmanagementisnowinvestigatingaveryprofitableproject,whichneedsaninvestmentof$150m.
CashOutflowsare$150mininvestmentand$20mindividends.CashInflowsare$100mininternalfunding.
0+100m150m+20m
Thisisnotinbalance.Inflowstotal$100mandoutflowstotal$170m.Inordertomeetthecommitmentofacceptingtheprofitableinvestmentandpayingthedividendmanagementmustfindanextra$70minfunding.Theywillneedtoraisefundseitherbyborrowingorissuingnewequity.
TheFinanceFunction
SourceofFunds
Objectives
UseofFunds
Thefinancefunctioninvolvesthefinancialmanagerraisingfundsandusingthemtoaddvaluetothefirm.Sincemanagersendeavourtomakedecisionsthatincreasevaluetheyneedtoknowhowtomeasuretheimpactoftheirfinancialdecisionsonvalue.
Thecorrectdecisionscanonlybedeterminedinlightofthestatedobjectives.Toensuretheefficientandeffectivesourcingandutilisationoffunds,theobjectivesofthefirmmustbeconsidered.Inthisunitweadopttheobjectiveofmaximisingthemarketvalueofthefirm.Becarefulhere,maximisingaccountingprofitormaximisingreturnoninvestmentdoesnotalwaysmaximisevalue.Thispointwillbedemonstratedatvariouspointsthroughoutthecourse,especiallyinmodulefour.
Manyotherobjectivesofthefirmhavebeencanvassedintheliterature.Althoughthisisaninterestingissueitisnotonethatwewillpursueinthisunit.OneissuethatwillbecoveredbrieflyistheAgencyRelationship(seeSection1.5.8ofPBEHP.
TheConceptualFramework
ChapterTwoofyourtext,mostofwhichissetaslightreading,developsthetheoryofthefirmanddemonstrateshowwemightarriveatoptimalinvestment,financinganddividenddecisions.Thedecisionrulesderivedinthischapterareanessentialpartoftheconceptualframeworkoffinance.Soeventhoughwedonotstudythischapterindepthwerelyonitsconclusionsasastartingpointinourventureintotherealmoffinance.Themoreadventurousstudentsareinvitedtostudythischapterinmoredepth.
Insummary,thechapterconcludesthatundercertainrestrictiveconditions(perfectmarkets,perfectcertainty,notaxes,rationalinvestors,andnofrictions)thethreefinancialdecisionsareresolvedasfollows:
InvestmentDecisionSolution:
Takeallprojectsthataddvalue.StatedanotherwaythisgivesustheNetPresentValuerule,whichsaystakeallprojectsthathaveapositivenetpresentvalue(NPV)andrejectthosethathaveanegativenetpresentvalue.Analternateformistotakeallprojects,whichgiveareturngreaterthanthecostoffundsandrejectthosethatdonot.
FinancingDecisionSolution
Fundallprofitableprojects(allprojectsthataddvalue).Thesourceisirrelevant.Thatis,providedthatyouoptimisetheinvestmentdecisionbyfundingallprofitableinvestments,thequestionofwhereyoufinancefrom(debtvequity)makesnodifference.Ofcoursethisconclusionassumesthatweareoperatinginahighlycompetitivemarket.
DividendDecisionSolution
Providedthattheinvestmentandfinancingdecisionsareoptimisedthedividenddecision(dividendsvcapitalgains)isirrelevant.
ThesethreepoliciesarecoveredinChapter2ofthetext.
“Ifeverythingintherealworldoffinancewasthatsimplewecouldfinishourcourseinfinancehereandnow”Ihearyousay.
Myresponseis“yes,youareright”.
TheassumptionsusedinthemodeldevelopedinChapterTwoareveryrestrictiveanddonotreflecttherealworld.However,aswedevelopourconceptualframeworkwewillmovetomorecomplexmodels,whichprovidesolutionsthatareveryusefulandapplicabletotherealworldoffinance.Thereasonwestartwithasimplemodelissothatwecaneasilysee,whichvariablesorfactorsareimportant.Thiswillensurethatwearenotside-trackedintoaflawedanalysis.
Topic1.2The“FinancewayofThinking”andtheThreeLessonsofFinance
Thethemeofthisunitisthatbusinessesexisttocreatevalue.Ifafirmdoesnotcreatevaluecompetitionwillsoonforceitoutofbusiness.Weneedtoaddressquestionssuchas“Whatisvalueandhowisitcreated?".Inordertodothiswemustunderstandthethreebasicideasoffinancethatformtheconceptualframeworkandhelpusapplythe“FinancewayofThinking”
Thethreebasicideasare:
Timevalueofmoney
Arbitrage,and
Diversification
Throughoutourjourneyintothescience(orshouldIcallitthediscipline)offinancewewillregularlyreferbacktotheseideastohelpusresolveissuesandproblemsintheapplicationofourdiscipline.A“neat”explanationoftheseideascanbefoundonpage140ofRoss,Christensen,Drew,Thompson,WesterfieldandJordan,“FundamentalsofCorporateFinance”,2011,5thEdition,McGrawHill.
Thelogicissimple.Inanyvaluationprocesswewouldneedtoperformsomesortofcostbenefitanalysisinordertoseeifsomeactionaddsvalue.
Calculate/forecastthebenefits
Calculate/forecastthecosts
Comparethetwo
Ifbenefitsexceedthecoststheactionaddsvalue
Itiscontendedherethatbeforethecostsandbenefitscanbeevaluatedproperly,timevalueofmoney,arbitrageanddiversificationmustbeconsidered.
Beforemovingontothesethreebasicideas,herearesomedefinitionsandconcepts.
“FinanceHat”
Infinanceandeconomicsweuseadifferentmeasureofprofitfromthatusedinotherdisciplines.Thoseofyouwhohaveworkedorstudiedaccountingand/ortaxationwillneedtoadjustyourwayofthinkingbeforesolvingfinancialproblems.
Whendoingaccountingworkputonyour“AccountingHat”Whendoingtaxputonyour“TaxationHat”
Whensolvingfinanceproblemsputonyour“FinanceHat”Agoodexampleisdepreciation:
Infinancewedonotincludedepreciationasacostinourcost/benefitanalysisbecauseitisnotconsideredtobearelevantcashflowforvaluationpurposes.The
initialcostofourinvestment(asset)isconsideredasanupfrontcashflowratherthanacosttobeapportioned(depreciated)overthelifeoftheasset.
Inaccountingdepreciationisincludedasacosttobedeductedfromrevenuetogettheprofitfigure.
Fortaxationpurposes,depreciationiscommonlyanallowablededuction.However,theamountallowablemaydiffersignificantlyfromthatusedforaccountingpurposesandfromthedeclineineconomicvalueoftheasset.
Anotherexampleistherecognitionofcapitalgains.Foraccountingandtaxationpurposesacapitalgainisnotrecogniseduntilrealised(untiltheassetissold).Infinancewerecogniseacapitalgain(orloss)assoonasachangeinvalueoccurs.
Theunderstandingoffinancerequiresalittlebitof“l(fā)ateralthinking”onyourpart.Youwillcomeacrosstransactionsthatdonotappeartomakesensetothe“l(fā)ayperson”.Agoodexampleissellingsomethingthatyoudonothave–“goingshort”.Iwillleavetheexplanationofthistransactiontoalaterstageinthisunit.
Activity1.1
Lookupshortsellingandbepreparedtodiscussthesignificanceofthistransactioninclassnextweek.Try
.
Return
Infinanceweviewreturnsorprofitsasbeingmadeupoftwoparts:
Acashflowstream–normallyadividend,rentorinterestpayment,and
Acapitalgainorlossfromtheincreaseordecreaseinvalue.
Againdifferentapproachesareusedtomeasureprofitdependingonwhetherwearemeasuringeconomicreturns,accountingprofitortaxableincome.
Hereisanexampleofthecalculationofreturn.SupposewepurchasedashareinTelstraatthebeginningoftheyearfor$3.40.Weholdtheshareforoneyearanditspricerisesto$4.45attheendoftheyear.Duringtheyearwereceivedadividendof55cents.Wedonotselltheshare,asitisourintentiontoholditforafewyears.
Ourreturnismadeupof55centsindividendsand$1.05incapitalgain.Eventhoughwehavenotsoldtheshare,infinancewerecognisethecapitalgain.Contrastthiswiththeaccountingandtaxationpositions,whichdonotrecogniseacapitalgainuntilitisrealised(i.e.theshareissold).
Thetotaldollarreturnis$1.60.Tocalculatetheannualreturnasapercentagewedividethedollarreturnbythepriceatthebeginningoftheperiodinquestion.Inthiscasethepricewas$3.40.
Returnequals1.60/3.40giving47.06%pa.Thatwouldbenice,wouldn’tit?
Thisexamplemeasuresthehistoricoractualreturn.Wecanalsoconsiderreturninaforwardlookingsense.ForexampleifwebuyashareinBHPtodaywiththeintentionofholdingitforoneyear,whatreturncanweexpecttomakeovertheyear(expectedreturn)?OnewaywouldbetoprojectthepriceforBHPattheendoftheyearandmeasurethereturnasapercentageincrease.
Formulawithoutdividends
rC1C0
C0
Formulawithdividends
rC1D1C0
C0
Where:
r=return
C0=cashfloworvalueatthebeginningoftheperiodC1=cashfloworvalueatendofperiod
D1=dividendpaidatendofperiod
WealsomakethedistinctionbetweenNominalReturnsandRealReturns.SeeSection1.5.4ofPBEHP.
Activity1.2
Lookupthedefinitionsofnominalinterestratesandrealinterestratesandbepreparedtodiscusstheirrelationshiptoexpectedinflationinclass.
MarketValues
Anotherdifferenceisthatinfinanceweusemarketvalueswhereverpossibleinpreferencetobookvalues.
Thefollowingequalitywillbecommonlyreferredto:A = E + D
or
V = E + D
Themarketvalueofthefirm’sassetsisequaltothemarketvalueofthefirm’sequityplusthemarketvalueofthefirm’sdebt.
ThoseofyouthathavestudiedaccountingwillrecognisethisequationasbeingsimilartotheAccountingEquationusedinelementaryaccounting.Themajordifferenceisthatinfinanceweusecurrentmarketvalues,whereasaccountinguseshistoricorbookvalues(originalcost).
TimeValueofMoney
AssumethatyourfirmisinvestigatinganoilandgasprojectontheNorthWestShelfwiththefollowingsetofcashflows(inbillions$):
Year
0
1
2
3
…
25
CashFlow
(10)
1.0
1.0
1.0
1.0
1.0
Theprojectrequiresanoutlayof$10billionnow(time0)andpromisestogivecashflowreturnsof$1.0billionattheendofeachyearfor25years.Assumethatinvestorsinthemarketrequireareturnof10%paforthistypeofproject(thisrateissometimesreferredtoasthe“opportunitycostsoffunds”or“thecostofcapital”).
IfthenumbersarefamiliaritisbecausetheexampleisbasedonthesaleofgasfromtheNorthWestShelf(NWS)toChina,announcedinabout2002.Thenumbersarefictitious.
Shouldthefirmaccepttheproject?
Weaskthequestion,“Doestheprojectaddvaluetothefirm”?
Asimpleapproachwouldbetocomparethecostswiththebenefits.Costs: $10billion
Benefits: $25billion(25yearsat$1billion)Netbenefit: $25b–$10b=$15billionprofit
Thatshouldpaysomehandsomesalaries;buyafewFerraris,severalbeachfrontvillas,asuperyacht,aprivatejet,theoddtriptothemoonandrealestateonMars.
Unfortunately,ifyouannouncedthatyourfirmwastakingthisproject,thevalueofyourshareswouldfall.
Thereasonisthatyouhaveignoredthetimevalueofmoneyandtheopportunitycostoffunds.Animportantcosthasbeenomitted.Youarecomparing“appleswithoranges”.
NetPresentValue
InfinanceweevaluatesuchprojectsbycalculatingtheNPV(NetPresentValue)acost/benefitanalysis,whichatthesametimeadjustsforthetimevalueofmoney.
NPV=-InitialInvestment+thesumofthepresentvaluesofallfuturecashflows.
NPVInitialInvestment
CFt
t11it
Wedothecalculationusingtheformulaabove;moreaboutthislaterintheunit(Module04).
AtthisstageacceptmywordthattheNPVofourprojectis:
-$10b+$9.08b=-$0.92bThatis,thecostsequal$10b.
Thepresentvalueofthebenefitsis$9.08b.Afteradjustingforthetimevalueofmoneyattenpercent,$1bperyearfor25yearsisworth(equivalentto)only$9.08battimezero(now).
Overallthenetbenefitisnegative,andtheprojectwouldthereforecauseadropinvalueifitweretobeaccepted.
IfNPVmeasureschangeinvalue,thissuggestsarulefortheinvestmentdecision.ThefirmshouldtakeallprojectswithapositiveNPVandrejectallprojectswithanegativeNPV.Soundsfamiliar,thisiscalledtheNPVrule.
Arbitrage
Twoassetswiththesameriskandwhichproducethesamecashflowsshouldhavethesamevalue.Financialmarketsarehighlycompetitive.Therearemillions(perhapsbillions)ofinvestorsandplayersinthemarketlookingforprofitableopportunities.Iftwoassetswiththesamecashflowswerevalueddifferentlythenanopportunitytoprofitwithzeroriskwouldarise.Tradingonthistypeofopportunityisreferredtoasarbitrage.Arbitragewillquicklybringtheassetvaluesintobalance.
Takethisverysimpleexample.SupposethatatthesamepointintimeyounoticedthatsharesinBHPweresellingfor$A14inSydneyandat$A20inNewYork.Couldyouarbitragethis?
Yes!“Youbeauty,amoneymachine”!
YouwouldsimultaneouslybuyinSydneyat$14andsellinNewYorkfor$20,making$6profitpersharesoldlessthecostoftransacting.Ofcourseifthisimbalanceweretooccur,itwouldnotlastforlong,becauseeveryoneelseinthemarketwouldattempttoarbitrage.Thepriceswouldveryquicklycomebackintobalance.
Arbitrageisaverypowerfulideaandhasmanyapplicationsinvaluation.Giventhataddingvalueisthenameofthegame,weneedtounderstandhowcompetitivemarketsbehave.
Diversification
Wehaveallheardthehomily“donotputallyoureggsinonebasket,(lestthebasketfallandyoubreakallyoureggsatonce)”orsomethingtothateffect.Thisisgoodadviceintheworldoffinance.Giventhatmost,ifnotallinvestorsareriskaverse,itpaystodiversify.
Diversificationprovidesthepotentialtoreduceriskwithoutdecreasingreturns.Thefollowinggraphdemonstratesthis.Wemeasurethetotalriskofaninvestmentusingthestandarddeviationofexpectedreturns.Itturnsoutthatsomeofthistotalriskisdiversifiableandcanberemoved.Thiscomponentisreferredtoasdiversifiablerisk(orasnon-systematicrisk).
Noofassets
Keepingreturnconstant
systematicrisk
unsystematicrisk
TotalRisk
Diversification
TOTALRISK=SYSRISK+UNSYSRISK
Asweaddmoreandmoreassetstoourportfoliototalriskreduces(followtheblueline).But,notethatitdoesnotfullydisappear.Thereissomeresidualriskleft.Thisisreferredtoassystematicriskornon-diversifiablerisk.Giventhatthisriskcannot
PAGE
10
ModuleOne
bediversifiedaway,riskaverseinvestorswillwanttobecompensatedforsystematicrisk.
Thefactthat(intherealworld)investmentsarenotallperfectlycorrelatedwitheachother,allowsriskreductionviadiversification.Riskaverseinvestorsseektoavoidriskandiftheycannot,theywishtobecompensatedforit.
Thehigherthesystematicriskthehigherthereturnrequiredtocompensateforthatrisk.JustconsiderAustraliangovernmentbonds.Thesearefairlysafe(almostriskfree)andprovideareturn(yield)ofabout4%pa.Wouldyoutakeonariskyinvestmentthatproducedonly4%pa?
No!Youcanmake4%withnoriskbyputtingyourmoneyingovernmentbonds.
Activity1.3
Lookupthecurrentrate(yield)forten-yeargovernmentbondsinthenewspaperandbepreparedtodiscussthesignificanceofthisnumberinclass.
Topic1.3TimeValueofMoneyandtheMathematicsofFinance
Moneyhasatimevalue,andisgenerallyexpressedintermsofitsreceiptwithearlierreceiptsbeingbetterthanlaterones.Eveniftherewerezeroinflation,mostpeoplewouldprefertohave$1000intheirpocketnow,ratherthaninoneyear’stime.
Followingthislineofreasoning,itislogicalthatifapersonistoreceiveaseriesofcashflowsondifferentdates,thevalueofthosecashflowscannotbecalculatedsimplybyaddingthem.Thevalueof$1000receivedtoday,plus$1000tobereceivedattheendoftheyearplus$1000tobereceivedattheendoftwoyears,isnot
$3000,butisalesseramount.
Acashflowline
Thisexamplecanbedepictedusingthefollowingdiagramorsomevariationofit.Itisagoodideatodrawsomesortofdiagramtodepicttheproblemathand.Thishelpsthestudenttovisualisetheproblemandassistsinthesolution.Herewehaveusedacashflowline.
0 1 2 3
1000 1000 1000
Thisseriesofcashflowswhenaddedtogethergiveatotalof$3000,buttheyarenotworth$3000now.Whataretheyworth?
Thevalueisgivenbythefollowingformula:
PresentValue10001000
1000
(1r) (1r)2
Where“r”istheinterestrateexpressedasadecimal.Thevaluewillalwaysbelessthan$3000(iethesumofthecashflows).
Ifr=10%thenthepresentvalueis$2735.54.
PresentValue100010001000
(1.1) (1.1)2
Anotherfactorrelatingtotheutilityofmoneyisrisk.Anamountof$110,000inthefuturemayseemmoreusefulthananamountof$100,000today,butwhatisthelikelihoodofreceivingthatmoney?Othereventscouldtakeplacethatcouldmeanthatapersonreceivednothinginthefuture,butcouldhaveenjoyedthe$100,000today.Withmoney,thereisprobablynosuchthingascertainty.Therearedifferentratesofreturnanddifferentlevelsofrisksfordifferenttypesofinvestment,buta
commondenominatoristhatthegreaterthereturnoninvestment,thegreatertheriskingettingthatreturn-moreaboutthislaterintheunit.
Soweneedtoadjustfortimevalueofmoney.Howdowedothis?WeuseaseriesofcalculationsthatcomeundertheheadingofFinancialMathematics.Financialmathematicsincludesthewiderangeofcalculationsthatunderliethemulti-trilliondollarfinanceindustry.
Herearesomefundamentalconceptsunderpinningfinancialmathematics:
Cashflows–Payments(outflows)orreceipts(inflows)ofmoney(cash)–outflowsareshownasnegativeusingeitheraminussignorbrackets;
Rateofreturn–Therelationshipbetweenthecashinflowsandcashoutflows;
Marketyieldorrate–therateofreturnoryieldwhichequatesthefuturecashflowswiththepriceofthefinancialinstrumentinquestion(establishedbymarketforces);
Timingconvention(cashflowsareassumedtooccuratapointintime,witht=0representingnow,andt=1representingtheendofthefirsttimeperiod,t=2endofsecondtimeperiod,andsoon;
Couponrate–Thecontractedrateofpaymentondebtandotherfinancialinstruments;
Financialcontracts–whereamountstobereceivedandtobepaidareagreed.
Theseareadequatelycoveredinthetext.
Financialanalysisanddecisionmakingrequiresacompetentunderstandingandapplicationoffinancialmathematics.Studentsshouldrefertothetexttocompiletheirownlistofformulasusedinfinancialmathematicsasappliedinthisunit.Itshouldbenotedthatdifferenttextbooks(anddifferentlecturers)useslightlydifferentwaysofexpressingtheseformulas–thereisnostandardisation,andstudentsneedtodeveloptheirownexpressionsorbecomefamiliarwiththeformulasprovidedbytheteacherforexampurposes.
Studentsshouldbecarefulwhencompilingthislist,asfontsusedbydifferentcomputers,versionsofsoftware,andprinterdrivers,torepresenttheformulasina“wordprocessed”documentmaynotalwaysbereliablyreproduced.
Asummaryoftheformulasusedinthesenotesmaybefoundattheendofeachmodule.
Inthisunit,attentionisgiventothefollowingcalculations:
Return(coveredabove)
SimpleInterest
CompoundInterest
PresentValue
FutureValue
EffectiveInterestRates
PresentandFutureValuesofAnnuities
PresentValueofPerpetuities
PresentValueofGrowingPerpetuities
Thefirstfiveitemsarecoveredinthismodule.TheothersareintroducedhereandcoveredindepthinModuleTwo.
Thefollowingsymbolswillbeusedthroughoutthematerialthatfollows:NPV=netpresentvalue
V=valueofthefirm
D=valueofdebt
E=valueofequityr=requiredreturn
C0=cashfloworvalueattime0C1=cashfloworvalueattime1CFt=cashflowattimet
D1=dividendattime1
FV=futurevalueoraccumulatedamountPV=presentvalueorprincipal
i=interestrate(youmayfind“r”and“k”alsobeinguseddependingonthecontext)n=numberoftimeperiods
t=timeperiodrangingfromt=0tot=n
jm=nominalannualratecompounded“m”timesperyearEAR=effectiveannualrate
Inthesenotesformulaswillbeprovidedwithoutproofs.Thosewithamathematicalbentmayliketocheckthederivationofalloftheformulasandsolvetheequationsfordifferentsituations.Thiswillhelpyouunderstandwhatyouaredoing.Theminimumrequirementisthatyouareabletosolvetheseproblemsusingaformulaandacalculator.Thetextbookhastablesatthebacktoassistwithcalculations.Studentsneedtobecompetentintheoperationsofthefinancialcalculatorsufficientlywelltobeabletoquicklycalculatetheanswerinanexam.
Studentsareencouragedtolearntousetheirfinancialcalculatorsasquicklyaspossible,andarepermittedtobringthemintotheexam.YoushouldalsolearnhowtodothesecalculationsusingthefinancialfunctionsinExcel.AsaguideastotestwhetheryouhaveyouhavemasteredthistopicyoushouldbeabletodoallofthequestionsatthebackofChapterThreeofthetextbookwithoutlookingatthesolutions.
SimpleInterest:SeeSection3.3ofPBEHP
Simpleinterestiswhereinterestovertheentireperiodoftheagreementorloaniscalculatedontheoriginalamountofprincipal.Thisisinfrequentlyusednowadaysincommercialsituations,butoftenformsthebasisofprivatefamilyloansandlessformalagreements.
Theformulais:
FV=PV(1+in)
Example:
Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pasimpleinterest?
Solution:
PV=$1000
n=2yearsi=10%pa
FV=tobecalculated
FV=PV(1+in)
FV=1000(1+.1x2)=1000(1.2)=1200
Fromnowonyouassumethatacompoundinterestcalculationisrequiredunlessspecificallyinstructedotherwise.
CompoundInterest:SeeSection3.4ofPBEHP
Interestoninterest.Compoundinterestiswhereinterestiscalculatedeachperiodontheprincipalamountandonanyaccruedinteresttothatpointintime.Thisiscommonlyusedforloansandinvestments.Itisimportanttoknowthefrequencyofcompoundingaswellasthestatedinterestrate,asthiscanhaveahugeimpactonbothperiodicrepaymentsorreceiptsandthetotalamountpaidovertheperiodoftheagreement.Note:Whenthereisonlyonecompoundingperiodthenbothsimpleinterestandcompoundinterestapproachesproducethesameresult.
Theformulais:
FV=PV(1+i)n
Example:
Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pacompoundedannual?
Solution:
Compoundedannually,meansthatinterestisaddedtotheaccountattheendofeachyear.
PV=$1000
n=2yearsi=10%pa
FV=tobecalculated
FV=PV(1+i)n
FV=1000(1.1)2=1000x1.21=$1210
NominalversusEffectiveRates(nottobeconfusedwithNominalvReal)
Itisalsoimportanttounderstandthedifferencebetweennominalandeffectiveinterestrateswhencalculatingeitherrepaymentsorreceipts,astheeffectiveinterestrateistheonethattakesaccountofthefrequencyofthecompounding.Thetotalamountofinterestpaidorreceivedisgreaterasthenumberofcompoundingperiodsisincreased.Inpracticeitisusualtoquotethenominalinterestrate.Forexample,myhousingloanhasaninterestrateof6%pa.Butthebankchargesinterestonamonthlybasis(thatistheyaddinteresttomyaccounteverymonth).Theeffectiveannualrateforthisloanis6.17%.Accuratetoonebasispoint.
Thecalculationoftheeffectiveinterestrateshouldbeusedbeforecomparingdifferentloansorinvestmentproductswithdifferentnominalinterestratesanddifferentcompoundingperiods.HerewewillcallthisratetheEffectiveAnnualRate(EAR).[AER=AnnualEffectiveRateisalsocommonusage]
Theformulais:
jm
EAR1m1
m
Example:
Polybankoffersabankcardfacility(Polycard)toitscustomersandadvertisesarateof18%pabutwiththeinterestaddedtotheaccounteverymonth.WhateffectiveannualrateisPolybankchargingitscustomers?
Solution:
jm=.18(18%)
m=12(monthly)
.1812
12
EAR1 1
EAR=19.56%
(SeeSection
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀疏矩陣課課程設計
- 電類課程設計心得
- 管道輸送工藝課程設計
- 2024年道路照明電氣工程安裝合同詳細描述
- 2024年適用擔保貸款合同示范文本版B版
- 游戲音效培訓課程設計
- 植物干制標本課程設計
- 朗誦與演講課程設計
- 空氣源熱泵空調課程設計
- 熔爐自動化控制原理考核試卷
- GB/T 3917.1-2009紡織品織物撕破性能第1部分:沖擊擺錘法撕破強力的測定
- GB/T 35694-2017光伏發(fā)電站安全規(guī)程
- GB/T 19418-2003鋼的弧焊接頭缺陷質量分級指南
- 高中語文文言文斷句課件
- 義務教育歷史課程標準(2022年版)【重新整理版】
- 2023屆新高考二卷語文點對點攻關訓練專題:文學類文本閱讀
- 2023-計算機考研408真題及答案
- 福建省寧德市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細及行政區(qū)劃代碼
- 垃圾焚燒鍋爐系統(tǒng)安裝方案
- 應急物資臺賬新參考模板范本
- 足球裁判規(guī)則PPT
評論
0/150
提交評論