2025屆湖南省長沙市寧鄉(xiāng)市高二上數學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆湖南省長沙市寧鄉(xiāng)市高二上數學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆湖南省長沙市寧鄉(xiāng)市高二上數學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆湖南省長沙市寧鄉(xiāng)市高二上數學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆湖南省長沙市寧鄉(xiāng)市高二上數學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省長沙市寧鄉(xiāng)市高二上數學期末質量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,直線過點與拋物線相交于兩點,且,則直線的斜率為()A. B.C. D.2.下列說法正確的是()A.“若,則,全為0”的否命題為“若,則,全不為0”B.“若方程有實根,則”的逆命題是假命題C.命題“,”的否定是“,”D.“”是“直線與直線平行”的充要條件3.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.4.已知橢圓的左、右焦點分別為,,點P是橢圓上一點且的最大值為,則橢圓離心率為()A. B.C. D.5.已知關于的不等式的解集是,則的值是()A B.5C. D.76.下列說法正確的個數有()個①在中,若,則②是,,成等比數列的充要條件③直線是雙曲線的一條漸近線④函數的導函數是,若,則是函數的極值點A.0 B.1C.2 D.37.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.8.已知x,y是實數,且,則的最大值是()A. B.C. D.9.設拋物線的焦點為,準線與軸的交點為,是上一點,若,則()A. B.C. D.10.設命題,則為A. B.C. D.11.若,則下列結論不正確的是()A. B.C. D.12.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.已知,,若,則______14.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______15.設等差數列{an}的前n項和為Sn,且S2020>0,S2021<0,則當n=_____________時,Sn最大.16.已知P,A,B,C四點共面,對空間任意一點O,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點為,上頂點為,直線與橢圓的另一個交點為A(1)求點A的坐標;(2)過點且斜率為的直線與橢圓交于,兩點(均與A,不重合),過點與軸垂直的直線分別交直線,于點,,證明:點,關于軸對稱18.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.19.(12分)已知雙曲線C:的離心率為,過點作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點A,B,且A,B兩點都在以點為圓心的同一圓上,求m的取值范圍20.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長為3的正方形,是中點,求直線與平面所成角的正弦值.21.(12分)已知數列滿足(1)求;(2)若,且數列的前n項和為,求證:22.(10分)如圖,P為圓上一動點,點A坐標為,線段AP的垂直平分線交直線BP于點Q(1)求點Q的軌跡E的方程;(2)過點A的直線l交E于C,D兩點,若△BCD內切圓的半徑為,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設直線傾斜角為,由,及,可求得,當點在軸上方,又,求得,利用對稱性即可得出結果.【詳解】設直線傾斜角為,由,所以,由,,所以,當點在軸上方,又,所以,所以由對稱性知,直線的斜率.故選:B.2、D【解析】A選項,全為0的否定是不全為0;B選項,先寫出逆命題,再判斷出真假;C選項,命題“,”的否定是“,”,D選項,根據直線平行,列出方程和不等式,求出,進而判斷出充要條件.【詳解】“若,則,全為0”的否命題為“若,則,不全為0”,A錯誤;若方程有實根,則的逆命題是若,則方程有實根,由得:,其中,所以若,則方程有實根是真命題,故B錯誤;命題“,”的否定是“,”,C錯誤;直線與直線平行,需要滿足且,解得:,所以“”是“直線與直線平行”的充要條件,D正確;故選:D3、A【解析】根據離心率及a,b,c的關系,可求得,代入即可得答案.【詳解】因為離心率,所以,所以,,則,所以C的漸近線方程為.故選:A4、A【解析】根據橢圓的定義可得,從而得到,則,其中,再根據對勾函數的性質求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因為在上單調遞減,所以當時函數取得最大值,即,即所以,即,所以,解得或(舍去)故選:A5、D【解析】由題意可得的根為,然后利用根與系數的關系列方程組可求得結果【詳解】因為關于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D6、B【解析】根據三角函數、等比數列、雙曲線和導數知識逐項分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數在上單調遞減,所以,故①正確,②當且時,此時,但是,,不成等比數列,故②錯誤,③由雙曲線可得雙曲線的漸近線為,故③錯誤,④“”是“是函數的極值點”的必要不充分條件,故④錯誤.故選:B.7、A【解析】根據橢圓的標準方程求出,利用雙曲線,結合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標準方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關鍵點點睛:本題主要考查雙曲線方程的求解,根據橢圓和雙曲線的關系建立方程求出,,是解決本題的關鍵,考查學生的計算能力,屬于基礎題8、D【解析】將方程化為圓的標準方程,則的幾何意義是圓上一點與點連線的斜率,進而根據直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點與點A連線的斜率,設,即,當此直線與圓相切時,斜率最大或最小,當切線位于切線AB時斜率最大.此時,,,所以的最大值為.故選:D9、D【解析】求出拋物線的準線方程,可得出點的坐標,利用拋物線的定義可求得點的坐標,再利用兩點間的距離公式可求得結果.【詳解】易知拋物線焦點為,準線方程為,可得準線與軸的交點,設點,由拋物線的性質,,可得,所以,,解得,即點,所以.故選:D.10、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應該為,即本題的正確選項為C.11、B【解析】由得出,再利用不等式的基本性質和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當且僅當時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質和基本不等式,考查推理能力,屬于基礎題.12、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據空間向量垂直得到等量關系,求出答案.【詳解】由題意得:,解得:故答案為:14、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,可得雙曲線方程為,設,則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設,則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:215、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數列{an}的前n項和為,所以,因為1+2020=1010+1011,所以,所以.,所以,所以當n=1010時,Sn最大.故答案為:1010.16、【解析】由條件可得存在實數,使得,再用向量表示出向量,即可得出答案.詳解】P,A,B,C四點共面,則存在實數,使得所以即所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)先求出直線的方程,聯立直線與橢圓,求出A點坐標;(2)設出直線方程,聯立橢圓方程,用韋達定理得到兩根之和,兩根之積,求出兩點的縱坐標,證明出,即可證明關于軸對稱.【小問1詳解】由題意得,,所以直線方程為,與橢圓方程聯立得解得或,當時,,所以【小問2詳解】設,,的方程為,聯立消去得,則,直線的方程為,設,則,直線的方程為,設,則,因為,即,所以點,關于軸對稱18、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標,再進行數量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙曲線的頂點坐標滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設點,,,,,由,得,整理得,①,把①代入,整理得②,因為,,所以.由,得,則,當且僅當時等號成立,所以的最小值是1.19、(1)(2)或【解析】(1)利用雙曲線離心率、點在雙曲線上及得到關于、、的方程組,進而求出雙曲線的標準方程;(2)聯立直線和雙曲線的方程,得到關于的一元二次方程,利用直線和雙曲線的位置關系、根與系數的關系得到兩個交點坐標間的關系,利用A,B兩點都在以點為圓心的同一圓上得到,再利用向量的數量積為0得到、的關系,進而消去得到的不等式進行求解.【小問1詳解】解:因為過點作垂直于x軸的直線截雙曲線C所得弦長為,所以點在雙曲線上,由題意,得,解得,,,即雙曲線的標準方程為.【小問2詳解】解:聯立,得,因為直線與該雙曲線C交于不同的兩點,所以且,即且,設,,的中點,則,,因為A,B兩點都在以點為圓心的同一圓上,所以,即,因為,,所以,即,將代入,得,解得或,即m的取值范圍為或.20、(1)證明見解析(2)【解析】(1)根據線面垂直的判定定理,結合面面垂直的判定定理進行證明即可;(2)建立空間直角坐標系,利用空間向量夾角公式,結合線面角定義進行求解即可.【小問1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問2詳解】∵平面平面,交AD于點F,平面,平面平面,∴平面,以為原點,,的方向分別為軸,軸的正方向建立空間直角坐標系,則,,,,,,,,設平面的法向量為,則,求得法向量為,由,所以直線與平面所成角的正弦值為.21、(1)(2)證明見解析【解析】(1)先求得,猜想,然后利用數學歸納法進行證明.(2)利用放縮法證得結論成立.【小問1詳解】依題意,,,,猜想,下面用數學歸納法進行證明:當時,結論成立,假設當時結論成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論