版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省長春興華高中高一上數(shù)學期末經典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設函數(shù)滿足,的零點為,則下列選項中一定錯誤的是()A. B.C. D.2.函數(shù)的一個零點落在下列哪個區(qū)間()A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.已知二次函數(shù)值域為,則的最小值為()A.16 B.12C.10 D.84.在中,是的().A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.若圓錐的底面半徑為2cm,表面積為12πcm2,則其側面展開后扇形的圓心角等于()A. B.C. D.6.函數(shù)f(x)圖象大致為()A. B.C. D.7.定義在上的奇函數(shù),在上單調遞增,且,則滿足的的取值范圍是()A. B.C. D.8.設方程的解為,則所在的區(qū)間是A. B.C. D.9.用反證法證明命題:“已知.,若不能被7整除,則與都不能被7整除”時,假設的內容應為A.,都能被7整除 B.,不能被7整除C.,至少有一個能被7整除 D.,至多有一個能被7整除10.某幾何體的三視圖如圖所示(圖中小正方形網格的邊長為),則該幾何體的體積是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角終邊經過點,則___________.12.將函數(shù)圖象上所有點的橫坐標壓縮為原來的后,再將圖象向左平移個單位長度,得到函數(shù)的圖象,則的單調遞增區(qū)間為____________13.將函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移個單位,得到的圖象對應的解析式是__________14.已知正數(shù)a,b滿足,則的最小值為______15.函數(shù)的值域是__________16.若關于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量、、是同一平面內的三個向量,且.(1)若,且,求;(2)若,且與互相垂直,求.18.已知且滿足不等式.(1)求不等式;(2)若函數(shù)在區(qū)間有最小值為,求實數(shù)值19.已知函數(shù)在區(qū)間上有最大值5和最小值2,求、的值20.已知函數(shù)為奇函數(shù).(1)求的值;(2)探究在上的單調性,并用函數(shù)單調性的定義證明你的結論.21.已知函數(shù)的定義域為A,的值域為B(1)求A,B;(2)設全集,求
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)的解析式,結合零點的存在定理,進行分類討論判定,即可求解.【詳解】由題意,函數(shù)的定義域為,且的零點為,即,解得,又因為,可得中,有1個負數(shù)、兩個正數(shù),或3個都負數(shù),若中,有1個負數(shù)、兩個正數(shù),可得,即,根據(jù)零點的存在定理,可得或;若中,3個都是負數(shù),則滿足,即,此時函數(shù)的零點.故選:C.2、B【解析】求出、,由及零點存在定理即可判斷.【詳解】,,,則函數(shù)的一個零點落在區(qū)間上.故選:B【點睛】本題考查零點存在定理,屬于基礎題.3、D【解析】根據(jù)二次函數(shù)的值域求出a和c的關系,再利用基本不等式即可求的最小值.【詳解】由題意知,,∴且,∴,當且僅當,即,時取等號.故選:D.4、B【解析】根據(jù)不等式的性質,利用充分條件和必要條件的定義進行判定,即可求解,得到答案.【詳解】在中,若,可得,滿足,即必要性成立;反之不一定成立,所以在中,是的必要不充分條件.故選B.【點睛】本題主要考查了充分條件和必要條件的判定,其中解答中熟練應用三角函數(shù)的性質是解答的關鍵,屬于基礎題.5、D【解析】利用扇形面積計算公式、弧長公式及其圓的面積計算公式即可得出【詳解】設圓錐的底面半徑為r=2,母線長為R,其側面展開后扇形的圓心角等于θ由題意可得:,解得R=4又2π×2=Rθ∴θ=π故選D【點睛】本題考查了扇形面積計算公式、弧長公式及其圓的面積計算公式,考查了推理能力與計算能力,屬于基礎題6、A【解析】根據(jù)函數(shù)圖象的特征,利用奇偶性判斷,再利用特殊值取舍.【詳解】因為f(x)=f(x),所以f(x)是奇函數(shù),排除B,C又因為,排除D故選:A【點睛】本題主要考查了函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.7、B【解析】由題意可得,,在遞增,分別討論,,,,,結合的單調性,可得的范圍【詳解】函數(shù)是定義在上的奇函數(shù),在區(qū)間上單調遞增,且(1),可得,,在遞增,若時,成立;若,則成立;若,即,可得(1),即有,可得;若,則,,可得,解得;若,則,,可得,解得綜上可得,的取值范圍是,,故選:B8、B【解析】構造函數(shù),則函數(shù)的零點所在的區(qū)間即所在的區(qū)間,由于連續(xù),且:,,由函數(shù)零點存在定理可得:所在的區(qū)間是.本題選擇B選項.9、C【解析】根據(jù)用反證法證明數(shù)學命題的步驟和方法,應先假設命題的否定成立而命題“與都不能被7整除”的否定為“至少有一個能被7整除”,故選C【點睛】本題主要考查用反證法證明數(shù)學命題,把要證結論進行否定,得到要證的結論的反面,是解題的關鍵.10、A【解析】利用已知條件,畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的體積即可【詳解】由題意可知幾何體的直觀圖如圖:是直四棱柱,底面是直角梯形,上底為:1,下底為2,高為2,棱柱的高為2,幾何體的體積為:V6故選A【點睛】本題考查幾何體的直觀圖與三視圖的關系,考查空間想象能力以及計算能力二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)正切函數(shù)定義計算【詳解】由題意故答案為:12、【解析】根據(jù)函數(shù)圖象的變換,求出的解析式,結合函數(shù)的單調性進行求解即可.【詳解】由數(shù)圖象上所有點的橫坐標壓縮為原來的后,得到,再將圖象向左平移個單位長度,得到函數(shù)的圖象,即令,函數(shù)的單調遞增區(qū)間是由,得,的單調遞增區(qū)間為.故答案為:13、【解析】利用函數(shù)的圖象變換規(guī)律,先放縮變換,再平移變換,從而可得答案【詳解】將函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),可得函數(shù)的圖象;再將的圖象向左平移個單位,得到的圖象對應的解析式是的圖象,故答案為:14、##【解析】右邊化簡可得,利用基本不等式,計算化簡即可求得結果.【詳解】,故,則,當且僅當時,等號成立故答案為:15、【解析】利用換元法,將變?yōu)?,然后利用三角恒等變換,求三角函數(shù)的值域,可得答案.【詳解】由,得,可設,故,不妨取為銳角,而,時取最大值),,故函數(shù)的值域為,故答案為:.16、【解析】根據(jù)一元二次不等式與二次函數(shù)的關系,可知只需判別式,利用所得不等式求得結果.【詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或(2),【解析】(1)先設,根據(jù)題意有求解.(2)根據(jù),,得,,然后根據(jù)與互相垂直求解.【詳解】(1)設,依題意得,解得或,即或.(2)因為,,因為與互相垂直,所以,即,所以,,解得或.【點睛】本題主要考查平面向量的向量表示和運算,還考查了運算求解的能力,屬于中檔題.18、(1);(2).【解析】(1)運用指數(shù)不等式的解法,可得的范圍,再由對數(shù)不等式的解法,可得解集;(2)由題意可得函數(shù)在遞減,可得最小值,解方程可得的值試題解析:(1)∵22a+1>25a-2.∴2a+1>5a-2,即3a<3∴a<1,∵a>0,a<1∴0<a<1.∵loga(3x+1)<loga(7-5x).∴等價為,即,∴,即不等式的解集為(,).(2)∵0<a<1∴函數(shù)y=loga(2x-1)在區(qū)間[3,6]上為減函數(shù),∴當x=6時,y有最小值為-2,即loga11=-2,∴a-2==11,解得a=.19、,.【解析】利用對稱軸x=1,[1,3]是f(x)的遞增區(qū)間及最大值5和最小值2可以找出關于a、b的表達式,求出a、b的值試題解析:依題意,的對稱軸為,函數(shù)在上隨著的增大而增大,故當時,該函數(shù)取得最大值,即,當時,該函數(shù)取得最小值,即,即,∴聯(lián)立方程得,解得,.20、(1);(2)在上為增函數(shù),證明見解析.【解析】(1)由可求得的值;(2)任取,可證明,則,從而可得結論.【詳解】(1)由于是定義在上的奇函數(shù),故,解得.經檢驗,是奇函數(shù);(2)是上的增函數(shù),證明如下:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【大學課件】中學生心理檔案的建立與應用
- EHS模床作業(yè)培訓(樣本)
- 二零二五年度民辦學校教師國際視野拓展合同3篇
- 招生費用與獎學金申請
- 招生展示與學校開放日
- 二零二五年度高速電梯安裝與改造工程勞務分包合同2篇
- 學費與獎學金政策分析
- 2025年水路貨物運輸規(guī)則運輸信息化建設合同3篇
- 二零二五版商業(yè)保理擔保合同2篇
- 加油站的行業(yè)展望和未來發(fā)展
- 2025年度土地經營權流轉合同補充條款范本
- 南通市2025屆高三第一次調研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學一模試卷
- 2025中國人民保險集團校園招聘高頻重點提升(共500題)附帶答案詳解
- 0的認識和加、減法(說課稿)-2024-2025學年一年級上冊數(shù)學人教版(2024)001
- 重癥患者家屬溝通管理制度
- 醫(yī)院安全生產治本攻堅三年行動實施方案
- 法規(guī)解讀丨2024新版《突發(fā)事件應對法》及其應用案例
- 工程項目合作備忘錄范本
- 信息安全意識培訓課件
- Python試題庫(附參考答案)
評論
0/150
提交評論