2025屆上海大學(xué)市北附屬中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第1頁(yè)
2025屆上海大學(xué)市北附屬中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第2頁(yè)
2025屆上海大學(xué)市北附屬中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第3頁(yè)
2025屆上海大學(xué)市北附屬中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第4頁(yè)
2025屆上海大學(xué)市北附屬中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆上海大學(xué)市北附屬中學(xué)數(shù)學(xué)高三上期末調(diào)研試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.2.已知,,為圓上的動(dòng)點(diǎn),,過(guò)點(diǎn)作與垂直的直線交直線于點(diǎn),若點(diǎn)的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.3.在邊長(zhǎng)為的菱形中,,沿對(duì)角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.4.已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù),使成立,則實(shí)數(shù)的值為()A. B. C. D.5.已知傾斜角為的直線與直線垂直,則()A. B. C. D.6.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說(shuō)法正確的是()A.③④ B.①② C.②④ D.①③④8.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無(wú)數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行9.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.10.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.11.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.12.設(shè)集合則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中所有項(xiàng)的系數(shù)和為_(kāi)_____,常數(shù)項(xiàng)為_(kāi)_____.14.已知為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作直線與圓相切于點(diǎn),且與雙曲線的右支相交于點(diǎn),若是上的一個(gè)靠近點(diǎn)的三等分點(diǎn),且,則四邊形的面積為_(kāi)______.15.已知雙曲線的一條漸近線方程為,則________.16.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)于的函數(shù)關(guān)系式;(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時(shí)腰的長(zhǎng)度.18.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(1)求曲線的方程(2)過(guò)點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說(shuō)明理由.20.(12分)已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動(dòng)點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程;(2)設(shè)點(diǎn),為橢圓C上的兩個(gè)動(dòng)點(diǎn),當(dāng)為多少時(shí),點(diǎn)O到直線MN的距離為定值.21.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)22.(10分)已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.(1)求拋物線的方程;(2)過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).2、A【解析】

由題意得,即可得點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,.故選:A.【點(diǎn)睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.3、A【解析】

畫(huà)圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.4、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時(shí),y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時(shí),等號(hào)成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍?hào)同時(shí)成立時(shí),等號(hào)成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.5、D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因?yàn)橹本€與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點(diǎn)睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問(wèn)題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問(wèn)題,畫(huà)出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問(wèn)題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.7、A【解析】

由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).8、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無(wú)數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.9、B【解析】

先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對(duì)應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對(duì)函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.10、C【解析】

由,化簡(jiǎn)得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼牵?,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡(jiǎn),余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.11、C【解析】

可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)椋?,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過(guò)程:設(shè),通過(guò)條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.12、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解析】

(1)令求得所有項(xiàng)的系數(shù)和;(2)先求出展開(kāi)式中的常數(shù)項(xiàng)與含的系數(shù),再求展開(kāi)式中的常數(shù)項(xiàng).【詳解】將代入,得所有項(xiàng)的系數(shù)和為3.因?yàn)榈恼归_(kāi)式中含的項(xiàng)為,的展開(kāi)式中含常數(shù)項(xiàng),所以的展開(kāi)式中的常數(shù)項(xiàng)為.故答案為:3;-260【點(diǎn)睛】本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特殊項(xiàng)問(wèn)題,屬于基礎(chǔ)題.14、60【解析】

根據(jù)題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長(zhǎng)度,再根據(jù)計(jì)算求解即可.【詳解】如圖所示:設(shè)雙曲線的半焦距為.因?yàn)?,,所以由勾股定理,得.所以.因?yàn)槭巧弦粋€(gè)靠近點(diǎn)的三等分點(diǎn),是的中點(diǎn),所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點(diǎn)睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長(zhǎng)度與面積的方法,需要根據(jù)雙曲線的定義表示各邊的長(zhǎng)度,再在合適的三角形里面利用余弦定理求得基本量的關(guān)系.屬于難題.15、【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫(xiě)出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱(chēng)性,考慮時(shí)的情況,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱(chēng)性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫(huà)出圖像是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)側(cè)面積取得最大值時(shí),等腰三角形的腰的長(zhǎng)度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過(guò)求導(dǎo)分析,得在時(shí)取得極大值,也是最大值.試題解析:(1)設(shè)交于點(diǎn),過(guò)作,垂足為,在中,,,在中,,所以S,(2)要使側(cè)面積最大,由(1)得:令,所以得,由得:當(dāng)時(shí),,當(dāng)時(shí),所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時(shí)取得極大值,也是最大值;所以當(dāng)時(shí),側(cè)面積取得最大值,此時(shí)等腰三角形的腰長(zhǎng)答:側(cè)面積取得最大值時(shí),等腰三角形的腰的長(zhǎng)度為.18、(1)見(jiàn)解析;(2)【解析】

(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【詳解】(1)如圖,過(guò)點(diǎn)作交于,連接,設(shè),連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點(diǎn),又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的一個(gè)法向量為,則,,令,得,設(shè)平面的一個(gè)法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查空間的面面垂直關(guān)系的證明,二面角的計(jì)算,在證明垂直關(guān)系時(shí),注意運(yùn)用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對(duì)角線互相垂直,屬于基礎(chǔ)題.19、(1);(2)存在,.【解析】

(1)設(shè)以為直徑的圓心為,切點(diǎn)為,取關(guān)于軸的對(duì)稱(chēng)點(diǎn),連接,計(jì)算得到,故軌跡為橢圓,計(jì)算得到答案.(2)設(shè)直線的方程為,設(shè),聯(lián)立方程得到,,計(jì)算,得到答案.【詳解】(1)設(shè)以為直徑的圓心為,切點(diǎn)為,則,取關(guān)于軸的對(duì)稱(chēng)點(diǎn),連接,故,所以點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸為4的橢圓,其中,曲線方程為.(2)設(shè)直線的方程為,設(shè),直線的方程為,同理,所以,即,聯(lián)立,所以,代入得,所以點(diǎn)都在定直線上.【點(diǎn)睛】本題考查了軌跡方程,定直線問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2)當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【解析】

(1)的面積最大時(shí),是短軸端點(diǎn),由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時(shí),設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達(dá)定理得,注意,一是計(jì)算,二是計(jì)算原點(diǎn)到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因?yàn)樵跈E圓上,當(dāng)是短軸端點(diǎn)時(shí),到軸距離最大,此時(shí)面積最大,所以,由,解得,所以橢圓方程為.(2)在時(shí),設(shè)直線方程為,原點(diǎn)到此直線的距離為,即,由,得,,,所以,,,所以當(dāng)時(shí),,,為常數(shù).若,則,,,,,綜上所述,當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【點(diǎn)睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運(yùn)算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時(shí)常用此法通過(guò)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論