![廣東省汕頭市潮陽區(qū)高中2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view8/M00/3F/21/wKhkGWcP9h-AYdrkAAGVgHGVT-k763.jpg)
![廣東省汕頭市潮陽區(qū)高中2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view8/M00/3F/21/wKhkGWcP9h-AYdrkAAGVgHGVT-k7632.jpg)
![廣東省汕頭市潮陽區(qū)高中2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view8/M00/3F/21/wKhkGWcP9h-AYdrkAAGVgHGVT-k7633.jpg)
![廣東省汕頭市潮陽區(qū)高中2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view8/M00/3F/21/wKhkGWcP9h-AYdrkAAGVgHGVT-k7634.jpg)
![廣東省汕頭市潮陽區(qū)高中2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view8/M00/3F/21/wKhkGWcP9h-AYdrkAAGVgHGVT-k7635.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省汕頭市潮陽區(qū)高中2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數(shù)是()A.1792 B.C.448 D.2.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.23.已知拋物線,則拋物線的焦點到其準(zhǔn)線的距離為()A. B.C. D.4.已知橢圓的左、右焦點分別為,為軸上一點,為正三角形,若,的中點恰好在橢圓上,則橢圓的離心率是()A. B.C. D.5.經(jīng)過點的直線的傾斜角為,則A. B.C. D.6.在等比數(shù)列中,,,則等于A. B.C. D.或7.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關(guān)鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠(yuǎn)月點(離月面最遠(yuǎn)的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.828.若數(shù)列滿足,則()A. B.C. D.9.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)10.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.11.在下列四條拋物線中,焦點到準(zhǔn)線的距離為1的是()A. B.C. D.12.若命題為“,”,則為()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;14.已知,用割線逼近切線的方法可以求得___________.15.?dāng)€尖是古代中國建筑中屋頂?shù)囊环N結(jié)構(gòu)形式,依其平面有圓形攢尖、三角攢尖、四角攢尖、八角攢尖.如圖屬重檐四角攢尖,它的上層輪廓可近似看作一個正四棱錐,若此正四棱錐的側(cè)面積是底面積的2倍,則側(cè)面與底面的夾角為___________16.等差數(shù)列前項之和為,若,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長為.(1)求圓的方程;(2)設(shè)點在圓上運動,點,且點滿足,記點的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(異于原點),使得對于上任意一點,都有為一常數(shù),若存在,求出所有滿足條件的點的坐標(biāo),若不存在,說明理由.18.(12分)已知函數(shù)(1)求關(guān)于x的不等式的解集;(2)若對任意的,恒成立,求實數(shù)a的取值范圍19.(12分)若分別是橢圓的左、右焦點,是該橢圓上的一個動點,且(1)求橢圓的方程(2)是否存在過定點的直線與橢圓交于不同的兩點,使(其中為坐標(biāo)原點)?若存在,求出直線的斜率;若不存在,說明理由20.(12分)在平面直角坐標(biāo)系中,已知直線(t為參數(shù)).以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點的直角坐標(biāo)為,直線與曲線的交點為,求的值.21.(12分)已知等差數(shù)列的前項和為,滿足,.(1)求數(shù)列的通項公式與前項和;(2)求的值.22.(10分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D2、B【解析】直接利用空間向量垂直的坐標(biāo)運算即可解決.【詳解】∵∴∴,解得,故選:B.3、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點到其準(zhǔn)線的距離為.故選:D.4、A【解析】根據(jù)題意得,取線段的中點,則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因為為正三角形,所以,取線段的中點,連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點睛】求解離心率及其范圍的問題時,解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解5、A【解析】由題意,得,解得;故選A考點:直線的傾斜角與斜率6、D【解析】∵為等比數(shù)列,∴,又∴為的兩個不等實根,∴∴或∴故選D7、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C8、C【解析】利用前項積與通項的關(guān)系可求得結(jié)果.【詳解】由已知可得.故選:C.9、B【解析】由導(dǎo)數(shù)求得的最小值,由最小值非負(fù)可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B10、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.11、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯誤,D正確.故選:D12、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時,在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于常考題型.14、【解析】根據(jù)導(dǎo)數(shù)的定義直接計算即可【詳解】因為,所以,故答案為:15、【解析】設(shè)此四棱錐P-ABCD底面邊長為,斜高為,連結(jié)AC、BD交于點O,連結(jié)OP.則以O(shè)為原點,為x、y、z軸正半軸建立空間直角坐標(biāo)系,用向量法求出側(cè)面與底面夾角.【詳解】設(shè)此四棱錐P-ABCD底面邊長為,斜高為,連結(jié)AC、BD交于點O,連結(jié)OP.則,,以O(shè)為原點,為x、y、z軸正半軸建立空間直角坐標(biāo)系則,,設(shè)平面的法向量為,則,令,則,顯然平面的法向量為所以,所以側(cè)面與底面的夾角為故答案為:.16、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①,圓;②存在,.【解析】(1)設(shè)圓心,根據(jù)題意,得到半徑,根據(jù)弦長的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進而可得出結(jié)果;(2)①設(shè),根據(jù)向量的坐標(biāo)表示,由題中條件,得到,代入圓的方程,即可得出結(jié)果;②假設(shè)存在一點滿足(其中為常數(shù)),設(shè),根據(jù)題意,得到,再由①,得到,兩式聯(lián)立化簡整理,得到,推出,求解得出,即可得出結(jié)果.【詳解】(1)設(shè)圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設(shè),則:,,∵點A在圓上運動即:所以點的軌跡方程為,它是一個以為圓心,以為半徑的圓;②假設(shè)存在一點滿足(其中為常數(shù))設(shè),則:整理化簡得:,∵在軌跡上,化簡得:,所以整理得,解得:;存在滿足題目條件.【點睛】本題主要考查求圓的方程,考查圓中的定點問題,涉及圓的弦長公式等,屬于常考題型.18、(1)答案見解析(2)【解析】(1)求出對應(yīng)方程的根,再根據(jù)根的大小進行討論,即可得解;(2)對任意的,恒成立,即恒成立,結(jié)合基本不等式求出的最小值即可得解.【小問1詳解】解:由已知易得即為:,令可得與,所以,當(dāng)時,原不等式的解集為;當(dāng)時,原不等式的解集為;當(dāng)時,原不等式的解集為;【小問2詳解】解:由可得,由,得,所以可得,,當(dāng)且僅當(dāng),即時等號成立,所以,所以的取值范圍是.19、(1);(2)存在;【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,利用列方程,化簡求得直線的斜率.【小問1詳解】依題意,得橢圓的方程為【小問2詳解】存在.理由如下:顯然當(dāng)直線的斜率不存在,即時,不滿足條件故由題意可設(shè)的方程為.由是直線與橢圓的兩個不同的交點,設(shè),由消去y,并整理,得,則,解得,由根與系數(shù)的關(guān)系得,,即存在斜率的直線與橢圓交于不同的兩點,使20、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標(biāo)公式得曲線的直角坐標(biāo)方程.(2)將代入曲線C的直角坐標(biāo)方程得,再利用直線參數(shù)方程t的幾何意義和韋達定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標(biāo)方程為②(2)將代入②式,得,點M的直角坐標(biāo)為(0,3),設(shè)這個方程的兩個實數(shù)根分別為t1,t2,則∴t1<0,t2<0則由參數(shù)t的幾何意義即得.【點睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的互化、直線參數(shù)方程t的幾何意義,屬于基礎(chǔ)題.21、(1),;(2).【解析】(1)設(shè)出等差數(shù)列的公差,借助前項和公式列式計算作答.(2)由(1)的結(jié)論借助裂項相消去求解作答.【小問1詳解】設(shè)等差數(shù)列的公差為,因,,則,解得,于是得,,所以數(shù)列的通項公式為,前項和.【小問2詳解】由(1)知,,所以.22、(1)證明見解析.(2)2.【解析】(1)取的中點,連接,.運用面面平行的判定和性質(zhì)可得證;(2)過點作,垂足為,連接,,設(shè)點到平面的距離為,根據(jù)棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的體積與三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 跨代溝通與家庭關(guān)系中的文化融合
- DB15T 3843-2025新能源分布式電源并網(wǎng)技術(shù)規(guī)范
- 云計算建設(shè)項目服務(wù)合同
- 事業(yè)單位與員工停薪留職合同范本
- 個人車位交易合同范例
- 個人企業(yè)房屋租賃合同模板
- 個人車庫使用權(quán)轉(zhuǎn)讓合同
- 個人財產(chǎn)保管合同范本
- 中小學(xué)教師聘用合同范本
- 業(yè)務(wù)合作合同范例
- 蘇州2025年江蘇蘇州太倉市高新區(qū)(科教新城婁東街道陸渡街道)招聘司法協(xié)理員(編外用工)10人筆試歷年參考題庫附帶答案詳解
- 搞笑小品劇本《大城小事》臺詞完整版
- 物業(yè)服務(wù)和后勤運輸保障服務(wù)總體服務(wù)方案
- 2025年北京市文化和旅游局系統(tǒng)事業(yè)單位招聘101人筆試高頻重點提升(共500題)附帶答案詳解
- 人大代表小組活動計劃人大代表活動方案
- 《大模型原理與技術(shù)》全套教學(xué)課件
- 2023年護理人員分層培訓(xùn)、考核計劃表
- 《銷售培訓(xùn)實例》課件
- 2025年四川省新高考八省適應(yīng)性聯(lián)考模擬演練(二)地理試卷(含答案詳解)
- 【經(jīng)典文獻】《矛盾論》全文
- Vue3系統(tǒng)入門與項目實戰(zhàn)
評論
0/150
提交評論