2025屆河北省三河市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁(yè)
2025屆河北省三河市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁(yè)
2025屆河北省三河市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁(yè)
2025屆河北省三河市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁(yè)
2025屆河北省三河市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆河北省三河市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.2.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是A. B. C. D.3.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.4.若復(fù)數(shù)滿足,則()A. B. C. D.5.已知是定義在上的奇函數(shù),且當(dāng)時(shí),.若,則的解集是()A. B.C. D.6.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.7.是虛數(shù)單位,則()A.1 B.2 C. D.8.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.9.已知函數(shù)fx=sinωx+π6+A.16,13 B.110.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.18011.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.12.復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復(fù)數(shù)為C.的實(shí)部與虛部之和為1 D.在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于第一象限二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),則滿足的的取值范圍為________.14.已知函數(shù)對(duì)于都有,且周期為2,當(dāng)時(shí),,則________________________.15.已知隨機(jī)變量服從正態(tài)分布,若,則_________.16.已知平面向量、的夾角為,且,則的最大值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,曲線:.(1)當(dāng)時(shí),求與的交點(diǎn)的極坐標(biāo);(2)直線與曲線交于,兩點(diǎn),線段中點(diǎn)為,求的值.18.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個(gè)內(nèi)角,若,求的值;19.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對(duì)于任意,直線與曲線都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)已知,其中.(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.21.(12分)如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn),.(Ⅰ)證明:;(Ⅱ)若為上的動(dòng)點(diǎn),求與平面所成最大角的正切值.22.(10分)已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、A【解析】

根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù)在上是減函數(shù),即對(duì)于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.3、D【解析】

根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.4、C【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:由,得,∴.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.5、B【解析】

利用函數(shù)奇偶性可求得在時(shí)的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時(shí),,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對(duì)稱區(qū)間的解析式;易錯(cuò)點(diǎn)是忽略奇函數(shù)在處有意義時(shí),的情況.6、A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.7、C【解析】

由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.8、C【解析】

可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)?,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.9、A【解析】

將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當(dāng)x∈0,π時(shí),又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【點(diǎn)睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.10、A【解析】

因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.11、C【解析】

將函數(shù)解析式化簡(jiǎn),并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.12、D【解析】

利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實(shí)部與虛部之和為,在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于第一象限,故選D.【點(diǎn)睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實(shí)部為、虛部為、模為、對(duì)應(yīng)點(diǎn)為、共軛為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.14、【解析】

利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當(dāng)時(shí),,∴,故答案為:【點(diǎn)睛】本題考查函數(shù)的周期性與對(duì)稱性的應(yīng)用,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.15、0.4【解析】

因?yàn)殡S機(jī)變量ζ服從正態(tài)分布,利用正態(tài)曲線的對(duì)稱性,即得解.【詳解】因?yàn)殡S機(jī)變量ζ服從正態(tài)分布所以正態(tài)曲線關(guān)于對(duì)稱,所.【點(diǎn)睛】本題考查了正態(tài)分布曲線的對(duì)稱性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16、【解析】

建立平面直角坐標(biāo)系,設(shè),可得,進(jìn)而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標(biāo)系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當(dāng)時(shí),取最大值.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積最值的計(jì)算,將問題轉(zhuǎn)化為角的三角函數(shù)的最值問題是解答的關(guān)鍵,考查計(jì)算能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)依題意可知,直線的極坐標(biāo)方程為(),再對(duì)分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長(zhǎng)即可得到答案.【詳解】(1)依題意可知,直線的極坐標(biāo)方程為(),當(dāng)時(shí),聯(lián)立解得交點(diǎn),當(dāng)時(shí),經(jīng)檢驗(yàn)滿足兩方程,(易漏解之處忽略的情況)當(dāng)時(shí),無交點(diǎn);綜上,曲線與直線的點(diǎn)極坐標(biāo)為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【點(diǎn)睛】本題考查直線與曲線交點(diǎn)的極坐標(biāo)、利用參數(shù)方程參數(shù)的幾何意義求弦長(zhǎng),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力.18、(1)(2)【解析】

(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域?yàn)?;?)由,得,又為的內(nèi)角,所以,又因?yàn)樵谥?,,所以,所?【點(diǎn)睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題,19、(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對(duì)任意,只有一個(gè)解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時(shí),,所以存在,,使得,,取,則與至少有兩個(gè)交點(diǎn),矛盾.由對(duì)任意,只有一個(gè)解,得為上的遞增函數(shù),得,令,則,得【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算及其應(yīng)用,同時(shí)考查邏輯思維能力和綜合應(yīng)用能力屬難題.20、(1)極大值,無極小值;(2).(3)見解析【解析】

(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對(duì)數(shù)的運(yùn)算性和放縮法即可證明.【詳解】解:(1)當(dāng)時(shí),設(shè)函數(shù),則令,解得當(dāng)時(shí),,當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時(shí),函數(shù)取得極大值,即極大值為,無極小值;(2)因?yàn)?,所以,因?yàn)樵趨^(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時(shí),在區(qū)間上恒成立,當(dāng)時(shí),,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時(shí),函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點(diǎn)睛】此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.21、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長(zhǎng)為2的菱形,平面,,易證平面,可得;(Ⅱ)連結(jié),由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點(diǎn),∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結(jié),由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當(dāng)且僅當(dāng)最短,即時(shí)最大,依題意,此時(shí),在中,,∴,,∴與平面所成最大角的正切值為.考點(diǎn):1.線線垂直證明;2.求線面角.22、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】

(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點(diǎn)的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時(shí),,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時(shí),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論