版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江省哈爾濱六中2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,正方體的棱長為2,以其所有面的中心為頂點的多面體的表面積為()A. B.C.8 D.122.已知、是平面直角坐標(biāo)系上的直線,“與的斜率相等”是“與平行”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分條件也非必要條件3.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.4.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.5.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.6.已知數(shù)列滿足,則()A. B.1C.2 D.47.已知p:,那么p的一個充分不必要條件是()A. B.C. D.8.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.9.已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.810.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.11.若在直線上,則直線的一個方向向量為()A. B.C. D.12.命題“存在,”的否定是()A.存在, B.存在,C.對任意, D.對任意,二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右焦點為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點.若(O為坐標(biāo)原點),則雙曲線C的離心率為___________.14.一個高為2的圓柱,底面周長為2,該圓柱的表面積為.15.橢圓上一點到兩個焦點的距離之和等于,則的標(biāo)準(zhǔn)方程為______.16.已知是等差數(shù)列,,,設(shè),數(shù)列前n項的和為,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)要設(shè)計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計才能使得總成本最低?18.(12分)已知函數(shù)在處取得極值(1)求實數(shù)a的值;(2)若函數(shù)在內(nèi)有零點,求實數(shù)b的取值范圍19.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)證明:數(shù)列的前項和.20.(12分)著名的“康托爾三分集”是由德國數(shù)學(xué)家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)21.(12分)等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若滿足數(shù)列為遞增數(shù)列,求數(shù)列前項和22.(10分)隨著生活條件的改善,人們健身意識的增強(qiáng),健身器械比較暢銷,某商家為了解某種健身器械如何定價可以獲得最大利潤,現(xiàn)對這種健身器械進(jìn)行試銷售.統(tǒng)計后得到其單價x(單位:百元)與銷量y(單位:個)的相關(guān)數(shù)據(jù)如下表:單價x(百元/個)3035404550日銷售量y(個)1401301109080(1)已知銷量y與單價x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(2)若每個健身器械的成本為25百元,試銷售結(jié)束后,請利用(1)中所求的線性回歸方程確定單價為多少百元時,銷售利潤最大?(結(jié)果保留到整數(shù)),附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.參考數(shù)據(jù):.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先確定幾何體的空間結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B2、D【解析】根據(jù)直線平行與直線斜率的關(guān)系,即可求解.【詳解】解:與的斜率相等”,“與可能重合,故前者不可以推出后者,若與平行,與的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分條件也非必要條件,故選:D.3、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進(jìn)而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.4、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.5、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設(shè)橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:6、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B7、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.8、B【解析】根據(jù)橢圓方程及其性質(zhì)有,求解即可.【詳解】由題設(shè),,整理得,可得.故選:B9、D【解析】由的周長為,結(jié)合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長為故選:D.10、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關(guān)系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.11、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D12、D【解析】特稱命題的否定:將存在改任意并否定原結(jié)論,即可知正確答案.【詳解】由特稱命題的否定為全稱命題,知:原命題的否定為:對任意,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過F作,利用點到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關(guān)系求解.【詳解】如圖,過F作,則E是AB中點,設(shè)漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點睛】本題考查雙曲線離心率的求解,解題的關(guān)鍵是分別表示出,,由建立關(guān)系.14、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.15、【解析】根據(jù)橢圓定義求出其長半軸長,再結(jié)合焦點坐標(biāo)即可計算作答.【詳解】因橢圓上一點到兩個焦點的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:16、-3033【解析】先求得,進(jìn)而得到,再利用并項法求解.【詳解】解:因為是等差數(shù)列,且,,所以,解得,所以,則,所以,,,,.故答案為:-3033三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時,總成本最底.18、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對函數(shù)求導(dǎo),求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點,只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗證時,在處取得極值(2)由(1)知,∴極值點為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點,只需∴19、(1)(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得,即可證得原不等式成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.20、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結(jié)合題意,得到,利用對數(shù)的運(yùn)算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長度為,根據(jù)“康托爾三分集”的定義可得:每次去掉的區(qū)間長后組成的數(shù)為以為首項,為公比的等比數(shù)列,第1次操作去掉的區(qū)間長為,剩余區(qū)間的長度和為,第2次操作去掉兩個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第3次操作去掉四個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第4次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,第次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,所以第次操作后剩余的各區(qū)間長度和為;【小問3詳解】解:設(shè)定義區(qū)間,則區(qū)間長度為1,由(2)可得第次操作剩余區(qū)間的長度和為,要使得“康托三分集”的各區(qū)間的長度之和不大于,則滿足,即,即,因為為整數(shù),所以的最小值為.21、(1)或(2)【解析】(1)利用等差數(shù)列通項公式,可構(gòu)造方程組求得,由此可得通項公式;(2)由(1)可得,利用分組求和法,結(jié)合等差等比求和公式可得結(jié)果.【小問1詳解】設(shè)等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 喬遷新居賀詞(集錦15篇)
- 雪話題作文(15篇)
- 初一滿分作文800字范文5篇
- 簡歷的自我評價匯編15篇
- 升學(xué)宴學(xué)生演講稿合集15篇
- 特鋼企業(yè)突發(fā)環(huán)境事件應(yīng)急預(yù)案
- 公交站亭基礎(chǔ)及鋪裝施工合同(2篇)
- 商場場地租賃協(xié)議書范本
- 貨車租賃協(xié)議書樣書
- 公租房協(xié)議范本
- 湖北省武漢市青山區(qū)2022-2023學(xué)年五年級上學(xué)期數(shù)學(xué)期末試卷(含答案)
- 《入侵檢測與防御原理及實踐(微課版)》全套教學(xué)課件
- IT企業(yè)安全生產(chǎn)管理制度范本
- 工業(yè)傳感器行業(yè)市場調(diào)研分析報告
- 小學(xué)生心理健康講座5
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級語文)部編版期末考試((上下)學(xué)期)試卷及答案
- 國家職業(yè)技術(shù)技能標(biāo)準(zhǔn) X2-10-07-18 陶瓷工藝師(試行)勞社廳發(fā)200633號
- 人教版八年級上冊生物全冊教案(完整版)教學(xué)設(shè)計含教學(xué)反思
- 2024年銀行考試-銀行間本幣市場交易員資格考試近5年真題附答案
- 人教版小學(xué)四年級數(shù)學(xué)上冊期末復(fù)習(xí)解答題應(yīng)用題大全50題及答案
- 冀教版五年級上冊脫式計算題100道及答案
評論
0/150
提交評論