版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省渾源縣第五中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,則向量與的夾角為()A. B.C. D.2.已知全集,集合,集合,則集合為A. B.C. D.3.若函數(shù)的定義域為,滿足:①在內(nèi)是單調(diào)函數(shù);②存在區(qū)間,使在上的值域為,則稱函數(shù)為“上的優(yōu)越函數(shù)”.如果函數(shù)是“上的優(yōu)越函數(shù)”,則實數(shù)的取值范圍是()A.B.C.D.4.若正實數(shù),滿足,則的最小值為()A. B.C. D.5.如圖,四面體中,,且,分別是的中點,則與所成的角為A. B.C. D.6.定義在上的奇函數(shù),在上單調(diào)遞增,且,則滿足的的取值范圍是()A. B.C. D.7.函數(shù)在區(qū)間上的最大值為2,則實數(shù)的值為A.1或 B.C. D.1或8.若兩平行直線與之間的距離是,則A.0 B.1C.-2 D.-19.已知H是球的直徑AB上一點,AH:HB=1:2,AB⊥平面,H為垂足,截球所得截面的面積為,則球的表面積為A. B.C. D.10.下列函數(shù)中,在區(qū)間上是減函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如果函數(shù)滿足在集合上的值域仍是集合,則把函數(shù)稱為H函數(shù).例如:就是H函數(shù).下列函數(shù):①;②;③;④中,______是H函數(shù)(只需填寫編號)(注:“”表示不超過x的最大整數(shù))12.已知,,則___________(用a、b表示).13.已知集合,.若,則___________.14.若函數(shù)在區(qū)間內(nèi)有最值,則的取值范圍為_______15.函數(shù)在上單調(diào)遞增,且為奇函數(shù),若,則滿足的的取值范圍為__________16.已知函數(shù)f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函數(shù),則a的取值范圍為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量(克)隨著時間(小時)變化的函數(shù)關(guān)系式近似為,其中(1)若病人一次服用9克的藥劑,則有效治療時間可達多少小時?(2)若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值18.已知函數(shù)的圖象兩相鄰對稱軸之間的距離是,若將的圖象先向右平移個單位長度,再向上平移2個單位長度后,所得圖象關(guān)于軸對稱且經(jīng)過坐標原點.(1)求的解析式;(2)若對任意,恒成立,求實數(shù)的取值范圍.19.如圖,已知三棱錐中,,,為的中點,為的中點,且為正三角形.(1)求證:平面;(2)求證:平面;(3)若,,求三棱錐的體積.20.已知全集,若集合,.(1)若,求,;(2)若,求實數(shù)的取值范圍.21.已知函數(shù).(1)若點在角的終邊上,求的值;(2)若,求的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】結(jié)合平面向量線性運算的坐標表示求出,然后代入模長公式分別求出和,進而根據(jù)平面向量的夾角公式即可求出夾角的余弦值,進而求出結(jié)果.【詳解】,,,,從而,且,記與的夾角為,則又,,故選:2、C【解析】,選C3、D【解析】由于是“上的優(yōu)越函數(shù)”且函數(shù)在上單調(diào)遞減,由題意得,,問題轉(zhuǎn)化為與在時有2個不同的交點,結(jié)合二次函數(shù)的性質(zhì)可求【詳解】解:因為是“上的優(yōu)越函數(shù)”且函數(shù)在上單調(diào)遞減,若存在區(qū)間,使在上的值域為,由題意得,,所以,,即與在時有2個不同的交點,根據(jù)二次函數(shù)單調(diào)性質(zhì)可知,即故選:D4、B【解析】由基本不等式有,令,將已知等式轉(zhuǎn)化為關(guān)于的一元二次不等式,解不等式即可得答案.【詳解】解:由題意,正實數(shù)滿足,則,令,可得,即,解得,或(舍去),所以當且僅當時,取得最小值2,故選:B.5、B【解析】設(shè)為中點,由中位線可知,所以就是所求兩條之間所成的角,且三角形為等腰直角三角形你給,所以.考點:空間兩條直線所成的角.【思路點晴】求異面直線所成的角常采用“平移線段法”,平移的方法一般有三種類型:利用圖中已有的平行線平移;利用特殊點(線段的端點或中點)作平行線平移;補形平移.計算異面直線所成的角通常放在三角形中進行.平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決6、B【解析】由題意可得,,在遞增,分別討論,,,,,結(jié)合的單調(diào)性,可得的范圍【詳解】函數(shù)是定義在上的奇函數(shù),在區(qū)間上單調(diào)遞增,且(1),可得,,在遞增,若時,成立;若,則成立;若,即,可得(1),即有,可得;若,則,,可得,解得;若,則,,可得,解得綜上可得,的取值范圍是,,故選:B7、A【解析】化簡可得,再根據(jù)二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系,結(jié)合正弦函數(shù)的值域分情況討論即可【詳解】因,令,故,當時,在單調(diào)遞減所以,此時,符合要求;當時,在單調(diào)遞增,在單調(diào)遞減故,解得舍去當時,在單調(diào)遞增所以,解得,符合要求;綜上可知或故選:A.8、C【解析】∵l1∥l2,∴n=-4,l2方程可化為為x+2y-3=0.又由d=,解得m=2或-8(舍去),∴m+n=-2.點睛:兩平行線間距離公式是對兩平行線方程分別為,,則距離為,要注意兩直線方程中的系數(shù)要分別相等,否則不好應(yīng)用此公式求距離9、D【解析】設(shè)球的半徑為,根據(jù)題意知由與球心距離為的平面截球所得的截面圓的面積是,我們易求出截面圓的半徑為1,根據(jù)球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,我們易求出該球的半徑,進而求出球的表面積【詳解】設(shè)球的半徑為,∵,∴平面與球心的距離為,∵截球所得截面的面積為,∴時,,故由得,∴,∴球的表面積,故選D【點睛】本題主要考查的知識點是球的表面積公式,若球的截面圓半徑為,球心距為,球半徑為,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,屬于中檔題.10、D【解析】根據(jù)二次函數(shù),冪函數(shù),指數(shù)函數(shù),一次函數(shù)的單調(diào)性即可得出答案.【詳解】解:對于A,函數(shù)在區(qū)間上是增函數(shù),故A不符合題意;對于B,函數(shù)在區(qū)間上是增函數(shù),故B不符合題意;對于C,函數(shù)在區(qū)間上是增函數(shù),故C不符合題意;對于D,函數(shù)在區(qū)間上是減函數(shù),故D符合題意.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、③④【解析】根據(jù)新定義進行判斷.【詳解】根據(jù)定義可以判斷①②在集合上的值域不是集合,顯然不是H函數(shù).③④是H函數(shù).③是H函數(shù),證明如下:顯然,不妨設(shè),可得,即,恒有成立,滿足,總存在滿足是H函數(shù).④是H函數(shù),證明如下:顯然,不妨設(shè),可得,即,恒有成立,滿足,總存在滿足H函數(shù).故答案為:③④12、##【解析】根據(jù)對數(shù)的運算性質(zhì)可得,再由指對數(shù)關(guān)系有,,即可得答案.【詳解】由,又,,∴,,故.故答案為:.13、【解析】根據(jù)給定條件可得,由此列式計算作答.【詳解】因集合,,且,于是得,即,解得,所以.故答案為:14、【解析】當函數(shù)取得最值時有,由此求得的值,根據(jù)列不等式組,解不等式組求得的取值范圍(含有),對賦值求得的具體范圍.【詳解】由于函數(shù)取最值時,,,即,又因為在區(qū)間內(nèi)有最值.所以時,有解,所以,即,由得,當時,,當時,又,,所以的范圍為.【點睛】本小題主要考查三角函數(shù)最值的求法,考查不等式的解法,考查賦值法,屬于中檔題.15、【解析】根據(jù)題意,f(x)為奇函數(shù),若f(2)=1,則f(?2)=-1,f(x)在(?∞,+∞)單調(diào)遞增,且?1?f(x?2)?1,即f(-2)?f(x?2)?f(2),則有?2?x?2?2,解可得0?x?4,即x的取值范圍是;故答案為.16、【解析】利用對數(shù)函數(shù)的定義域以及二次函數(shù)的單調(diào)性,轉(zhuǎn)化求解即可【詳解】解:函數(shù)f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函數(shù),可得:,解得a∈[﹣2,4)故答案為[﹣2,4)【點睛】本題考查復(fù)合函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)分兩段解不等式,解得結(jié)果即可得解;(2)求出當時,,再根據(jù)函數(shù)的單調(diào)性求出最小值為,解不等式可得解.【詳解】(1)由題意,當可得,當時,,解得,此時;當時,,解得,此時,綜上可得,所以病人一次服用9克的藥劑,則有效治療時間可達小時;(2)當時,,由,在均為減函數(shù),可得在遞減,即有,由,可得,可得m的最小值為【點睛】本題考查了分段函數(shù)的應(yīng)用,正確求出分段函數(shù)解析式是解題關(guān)鍵,屬于中檔題.18、(1);(2)【解析】(1)根據(jù)周期計算,,時滿足條件,即,過原點得到,得到答案.(2)設(shè),,根據(jù)函數(shù)最值得到,計算得到答案.【詳解】(1),,故.向右平移個單位長度,再向上平移2個單位長度得到y(tǒng)=.即,故,即,時滿足條件,即,,故.故(2),故,故,.設(shè),即恒成立.即的最大值小于等于零即可.故滿足:,即,解得【點睛】本題考查了三角函數(shù)解析式,函數(shù)恒成立問題,將恒成立問題轉(zhuǎn)化為最值問題是解題的關(guān)鍵.19、(1)見詳解;(2)見詳解;(3).【解析】(1)先證,可證平面.(2)先證,得,結(jié)合可證得平面.(3)等積轉(zhuǎn)換,由,可求得體積.【詳解】(1)證明:因為為的中點,為的中點,所以是的中位線,.又,,所以.(2)證明:因為為正三角形,為的中點,所以.又,所以.又因為,,所以.因為,所以.又因為,,所以.(3)因為,,所以,即是三棱錐的高.因為,為的中點,為正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【點睛】本題考查空間線面平行與垂直的證明,體積的計算.空間中的平行與垂直的證明過程就是利用相關(guān)定義、判定定理和性質(zhì)定理實現(xiàn)線線平行(垂直)、線面平行(垂直)、面面平行(垂直)的轉(zhuǎn)換.求三棱錐的體積常采用等積轉(zhuǎn)換的方法,選擇易求的底面積和高來求體積.20、(1),;(2).【解析】(1)求出集合,直接進行補集和并集
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度安徽省租賃房屋租賃合同解除協(xié)議2篇
- 二零二五版多功能會議場地租賃服務(wù)合同模板3篇
- 二零二五版廢渣運輸合同環(huán)保評估與整改方案3篇
- 二零二五版公積金貸款個人公積金提取借款合同3篇
- 二零二五版工業(yè)自動化生產(chǎn)線改造項目承包合同范本3篇
- 二零二五版房屋屋頂光伏發(fā)電系統(tǒng)檢測維修合同范本3篇
- 二零二五年度智慧能源管理系統(tǒng)集成合同2篇
- 二零二五年機床設(shè)備采購與客戶項目整體解決方案合同3篇
- 二零二五年抖音廣告創(chuàng)意策劃與投放服務(wù)合同3篇
- 二零二五年新型環(huán)保建材生產(chǎn)與建筑垃圾回收處理合同3篇
- 常用靜脈藥物溶媒的選擇
- 2023-2024學(xué)年度人教版一年級語文上冊寒假作業(yè)
- 當代西方文學(xué)理論知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學(xué)
- 2024年預(yù)制混凝土制品購銷協(xié)議3篇
- 2024-2030年中國高端私人會所市場競爭格局及投資經(jīng)營管理分析報告
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
- 《消防設(shè)備操作使用》培訓(xùn)
- 新交際英語(2024)一年級上冊Unit 1~6全冊教案
- 2024年度跨境電商平臺運營與孵化合同
- 2024年電動汽車充電消費者研究報告-2024-11-新能源
- 湖北省黃岡高級中學(xué)2025屆物理高一第一學(xué)期期末考試試題含解析
評論
0/150
提交評論