版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
寧夏回族自治區(qū)銀川市第一中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,已知點(diǎn),,,,直線AP,BP相交于點(diǎn)P,且它們斜率之積是.當(dāng)時(shí),的最小值為()A. B.C. D.2.曲線在處的切線如圖所示,則()A. B.C. D.3.已知點(diǎn)為直線上任意一點(diǎn),為坐標(biāo)原點(diǎn).則以為直徑的圓除過(guò)定點(diǎn)外還過(guò)定點(diǎn)()A. B.C. D.4.已知數(shù)列中,,則()A.2 B.C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.6.已知等差數(shù)列滿足,則等于()A. B.C. D.7.在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做“等和數(shù)列”,這個(gè)數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣38.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或9.已知數(shù)列的通項(xiàng)公式為,且數(shù)列是遞增數(shù)列,則實(shí)數(shù)的取值范圍是()A. B.C. D.10.在數(shù)列中,,則()A.2 B.C. D.11.東漢末年的數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一副“弦圖”,根據(jù)面積關(guān)系給出了勾股定理的證明,后人稱其為“趙爽弦圖”.如圖1,它由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形.我們通過(guò)類比得到圖2,它是由三個(gè)全等的鈍角三角形與一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形.對(duì)于圖2.下列結(jié)論正確的是()①這三個(gè)全等的鈍角三角形不可能是等腰三角形;②若,,則;③若,則;④若是的中點(diǎn),則三角形的面積是三角形面積的7倍.A.①②④ B.①②③C.②③④ D.①③④12.若數(shù)列滿足,則()A.2 B.6C.12 D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C,直線l:,若圓C上恰有四個(gè)點(diǎn)到直線l的距離都等于1.則b的取值范圍為___.14.已知、雙曲線的左、右焦點(diǎn),A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),且滿足,,則雙曲線的離心率為___________.15.已知平面的法向量為,平面的法向量為,若,則___________.16.如圖的形狀出現(xiàn)存南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最一上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球……,設(shè)從上至下各層球數(shù)構(gòu)成一個(gè)數(shù)列則___________.(填數(shù)字)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)是橢圓上的一點(diǎn),且橢圓的離心率.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)兩動(dòng)點(diǎn)在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.18.(12分)求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)經(jīng)過(guò)點(diǎn),;(2)長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,且經(jīng)過(guò)點(diǎn)19.(12分)已知各項(xiàng)均為正數(shù)的等差數(shù)列中,,且,,構(gòu)成等比數(shù)列的前三項(xiàng)(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和20.(12分)已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高所在直線方程為.求:(1)頂點(diǎn)的坐標(biāo);(2)直線的方程.21.(12分)已知函數(shù)(1)填寫函數(shù)的相關(guān)性質(zhì);定義域值域零點(diǎn)極值點(diǎn)單調(diào)性性質(zhì)(2)通過(guò)(1)繪制出函數(shù)的圖像,并討論方程解的個(gè)數(shù)22.(10分)為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開展滑雪促銷活動(dòng).該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來(lái)該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過(guò)1小時(shí)離開的概率分別為,;1小時(shí)以上且不超過(guò)2小時(shí)離開的概率分別為,;兩人滑雪時(shí)間都不會(huì)超過(guò)3小時(shí).求甲、乙兩人所付滑雪費(fèi)用相同的概率;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)出點(diǎn)坐標(biāo),求得、所在直線的斜率,由斜率之積是列式整理即可得到點(diǎn)的軌跡方程,設(shè),根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設(shè)點(diǎn)坐標(biāo)為,則直線的斜率;直線的斜率由已知有,化簡(jiǎn)得點(diǎn)的軌跡方程為又,所以點(diǎn)的軌跡方程為,即點(diǎn)的軌跡為以、為頂點(diǎn)的雙曲線的左支(除點(diǎn)),因?yàn)?,設(shè),由雙曲線的定義可知,所以,當(dāng)且僅當(dāng)、、三點(diǎn)共線時(shí)取得最小值,因?yàn)椋?,所以,即的最小值為;故選:A2、C【解析】由圖可知切線斜率為,∴.故選:C.3、D【解析】設(shè)垂直于直線,可知圓恒過(guò)垂足;兩條直線方程聯(lián)立可求得點(diǎn)坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過(guò)點(diǎn),由得:,以為直徑的圓恒過(guò)定點(diǎn).故選:D.4、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.5、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點(diǎn)睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.6、A【解析】利用等差中項(xiàng)求出的值,進(jìn)而可求得的值.【詳解】因?yàn)榈茫虼耍?故選:A.7、C【解析】利用已知即可求得,再利用已知可得:,問(wèn)題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點(diǎn)睛】本題主要考查了新概念知識(shí),考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題8、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D9、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C10、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D11、A【解析】對(duì)于①,由三角形大邊對(duì)大角的性質(zhì)分析,對(duì)于②,根據(jù)題意利用正弦定理分析,對(duì)于③,利用余弦定理分析,對(duì)于④,利用三角形的面積公式分析判斷【詳解】對(duì)于①,根據(jù)題意,圖2,它是由三個(gè)全等的鈍角三角形與一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,故,,所以這三個(gè)全等的鈍角三角形不可能是等腰三角形,故①正確;對(duì)于②,由題知,在中,,,,所以,所以由正弦定理得解得,因?yàn)?,所以,故②正確;對(duì)于③,不妨設(shè),所以在中,由余弦定理得,代入數(shù)據(jù)得,所以,所以,故③錯(cuò)誤;對(duì)于④,若是的中點(diǎn),則,所以,故④正確.故選:A第II卷(非選擇題12、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓的幾何性質(zhì),結(jié)合點(diǎn)到直線距離公式進(jìn)行求解即可.【詳解】圓C:的半徑為3,圓心坐標(biāo)為:設(shè)圓心到直線l:的距離為,要想圓C上恰有四個(gè)點(diǎn)到直線l的距離都等于1,只需,即,所以.故答案為:.14、【解析】可得四邊形為矩形,運(yùn)用三角函數(shù)的定義可得,,由雙曲線的定義和矩形的性質(zhì),可得,由離心率公式求解即可.【詳解】、為雙曲線的左、右焦點(diǎn),可得四邊形為矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:得出四邊形為矩形,利用雙曲線的定義解決焦點(diǎn)三角形問(wèn)題.15、2【解析】由,可兩平面的法向量也平行,從而可求出,進(jìn)而可求得答案【詳解】因?yàn)槠矫娴姆ㄏ蛄繛?,平面的法向量為,,所以∥,所以存?shí)數(shù)使,所以,所以,解得,所以,故答案為:216、【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到,即可得解【詳解】解:由題意可知,,,,,,故,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,由此求得,同理求得,從而化簡(jiǎn)求得直線的斜率為定值.【小問(wèn)1詳解】由題可知,解得,從而粚圓方程為.【小問(wèn)2詳解】證明設(shè)直線的斜率為,則,,聯(lián)立直線與橢圓的方程,得,整理得,從而,于是,由題意得直線的斜率為,則,,同理可求得,于是即直線的斜率為定值.18、(1);(2)或.【解析】(1)由已知可得,,且焦點(diǎn)在軸上,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;(2)由已知可得,,此時(shí)焦點(diǎn)在軸上,或,,此時(shí)焦點(diǎn)在軸上,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;【小問(wèn)1詳解】解:橢圓經(jīng)過(guò)點(diǎn),,,,,且焦點(diǎn)在軸上,橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】解:長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,且經(jīng)過(guò)點(diǎn),當(dāng)點(diǎn)在長(zhǎng)軸上時(shí),,,此時(shí)焦點(diǎn)在軸上,此時(shí)橢圓的標(biāo)準(zhǔn)方程為;當(dāng)點(diǎn)在短軸上時(shí),,,此時(shí)焦點(diǎn)在軸上,此時(shí)橢圓的標(biāo)準(zhǔn)方程.綜合得橢圓的方程為或.19、(1);(2)【解析】(1)設(shè)等差數(shù)列公差為d,利用基本量代換列方程組求出的通項(xiàng)公式,進(jìn)而求出的首項(xiàng)和公比,即可求出的通項(xiàng)公式;(2)利用分組求和法直接求和.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為d,則由已知得:,即,又,解得或(舍去),所以.,又,,,;【小問(wèn)2詳解】,.20、(1);(2).【解析】(1)求出直線的方程,然后聯(lián)立直線、的方程,即可求得點(diǎn)的坐標(biāo);(2)設(shè),可求得線段的中點(diǎn)的坐標(biāo),將點(diǎn)的坐標(biāo)代入直線的方程,可求得的值,可得出點(diǎn)的坐標(biāo),進(jìn)而利用直線的斜率和點(diǎn)斜式可得出直線的方程.【小問(wèn)1詳解】解:,所以,而,則,所以直線的方程為,由,解得,所以頂點(diǎn)的坐標(biāo)為.【小問(wèn)2詳解】解:因?yàn)樵谥本€,所以可設(shè),由為線段的中點(diǎn),所以,將的坐標(biāo)代入直線的方程,所以,解得,所以.故,故直線的方程為,即.21、(1)詳見(jiàn)解析(2)詳見(jiàn)解析【解析】(1)利用導(dǎo)數(shù)判斷函數(shù)的性質(zhì);(2)由函數(shù)性質(zhì)繪制函數(shù)的圖象,并將方程轉(zhuǎn)化為,即轉(zhuǎn)化為與的交點(diǎn)個(gè)數(shù).【小問(wèn)1詳解】函數(shù)的定義域是,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極大值,同時(shí)也是函數(shù)的最大值,,當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)的值域是,,得,所以函數(shù)的零點(diǎn)是,定義域值域零點(diǎn)極值點(diǎn)單調(diào)性性質(zhì)單調(diào)遞增區(qū)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《職業(yè)農(nóng)民培育》課件
- 2024年鄉(xiāng)鎮(zhèn)組織員個(gè)人年終工作總結(jié)
- 《旅行社的戰(zhàn)略管理》課件
- 協(xié)力共贏:團(tuán)隊(duì)力量
- 酒店前廳保安執(zhí)勤要領(lǐng)
- 保險(xiǎn)行業(yè)銷售技巧培訓(xùn)總結(jié)
- 2001年天津高考語(yǔ)文真題及答案(圖片版)
- 媒體行業(yè)客服工作感想
- 景觀設(shè)計(jì)師年終總結(jié)7篇
- 2023年項(xiàng)目管理人員安全培訓(xùn)考試題(能力提升)
- 老舊小區(qū)改造工程安全管理體系管理制度及措施
- 2024年山西省晉中市公開招聘警務(wù)輔助人員(輔警)筆試摸底測(cè)試(3)卷含答案
- 2024夏令營(yíng)項(xiàng)目家長(zhǎng)溝通與反饋服務(wù)協(xié)議3篇
- 文史哲與藝術(shù)中的數(shù)學(xué)知到智慧樹章節(jié)測(cè)試課后答案2024年秋吉林師范大學(xué)
- 2024年秋季新人教版七年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教案
- 13485質(zhì)量管理培訓(xùn)
- 9《復(fù)活(節(jié)選)》練習(xí) (含答案)統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 工程主合同補(bǔ)充協(xié)議書范本(2篇)
- 智慧樓宇I(lǐng)BMS整體解決方案
- 《客房服務(wù)與管理》課程標(biāo)準(zhǔn)課程內(nèi)容與要求
- GB 26920-2024商用制冷器具能效限定值及能效等級(jí)
評(píng)論
0/150
提交評(píng)論