2025屆江西省宜春市上高縣二中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2025屆江西省宜春市上高縣二中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2025屆江西省宜春市上高縣二中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2025屆江西省宜春市上高縣二中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2025屆江西省宜春市上高縣二中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆江西省宜春市上高縣二中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角大小為()A. B.C. D.2.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結(jié)果為()A. B.C. D.3.已知圓,則圓C關(guān)于直線對稱的圓的方程為()A. B.C. D.4.橢圓中以點為中點的弦所在直線斜率為()A. B.C. D.5.已知數(shù)列是等差數(shù)列,為數(shù)列的前項和,,,則()A.54 B.71C.81 D.806.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.7.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.8.如圖,直三棱柱的所有棱長均相等,P是側(cè)面內(nèi)一點,設(shè),若P到平面的距離為2d,則點P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分9.設(shè),分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點,則雙曲線的離心率為()A. B.2C. D.10.已知函數(shù),在定義域內(nèi)任取一點,則使的概率是()A. B.C. D.11.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.12.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.14.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)△ABC的面積為S,其中,,則S的最大值為______15.已知雙曲線C:的一個焦點坐標(biāo)為,則其漸近線方程為__________16.曲線的長度為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標(biāo)原點,若,求直線l的方程.18.(12分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:其中一個數(shù)字被污損.(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計了4位觀眾的周均學(xué)習(xí)成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)年齡(歲)20304050周均學(xué)習(xí)成語知識時間(小時)2.5344.5由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為55歲觀眾周均學(xué)習(xí)成語知識時間.參考公式:,.19.(12分)如圖所示,在正方體中,點,,分別是,,的中點(1)證明:;(2)求直線與平面所成角的大小20.(12分)如圖,在四棱錐中,底面ABCD是邊長為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小21.(12分)為了謳歌中華民族實現(xiàn)偉大復(fù)興的奮斗歷程,增進(jìn)學(xué)生對中國共產(chǎn)黨的熱愛,某學(xué)校舉辦了一場黨史競賽活動,共有名學(xué)生參加了此次競賽活動.為了解本次競賽活動的成績,從中抽取了名學(xué)生的得分(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,所有學(xué)生的得分都不低于分,將這名學(xué)生的得分進(jìn)行分組,第一組,第二組,第三組,第四組(單位:分),得到如下的頻率分布直方圖(1)求圖中的值,估計此次競賽活動學(xué)生得分的中位數(shù);(2)根據(jù)頻率分布直方圖,估計此次競賽活動得分的平均值.若對得分不低于平均值的同學(xué)進(jìn)行獎勵,請估計在參賽的名學(xué)生中有多少名學(xué)生獲獎22.(10分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標(biāo)原點,當(dāng)m為何值時,=0.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因為所以故選:B2、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C3、B【解析】求得圓的圓心關(guān)于直線的對稱點,由此求得對稱圓的方程.【詳解】設(shè)圓的圓心關(guān)于直線的對稱點為,則,所以對稱圓的方程為.故選:B4、A【解析】先設(shè)出弦的兩端點的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設(shè)弦的兩端點為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A5、C【解析】利用等差數(shù)列的前n項和公式求解.【詳解】∵是等差數(shù)列,,∴,得,∴.故選:C.6、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運(yùn)動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A7、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負(fù)),故.故選:D.8、B【解析】取的中點,得出平面,作,在直角中,求得,以為原點,為軸,為軸建立平面直角坐標(biāo)系,求得點的軌跡方程,即可求解.【詳解】如圖所示,取的中點,連接,得到平行于平面且過點的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設(shè)直三棱柱的所有棱長均為,且,以為原點,為軸,為軸建立平面直角坐標(biāo)系,則,所以,即所以,整理得,所以點P的軌跡是橢圓的一部分.故選:B.9、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標(biāo),再用兩點間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標(biāo)為,又因為,所以,所以,所以.故選:D10、A【解析】解不等式,根據(jù)與長度有關(guān)的幾何概型即可求解.【詳解】由題意得,即,由幾何概型得,在定義域內(nèi)任取一點,使的概率是.故選:A.11、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).12、A【解析】根據(jù)平面,平面求解.【詳解】因為平面,平面,所以,又,,,所以,所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點到另一個定點的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設(shè)P(x,y),由阿氏圓的定義可得即化簡得則設(shè)則由拋物線的定義可得當(dāng)且僅當(dāng)四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質(zhì),同時考查了阿氏圓定義的應(yīng)用.還考查了學(xué)生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大14、【解析】應(yīng)用余弦定理有,再由三角形內(nèi)角性質(zhì)及同角三角函數(shù)平方關(guān)系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當(dāng)且僅當(dāng)時等號成立,又,當(dāng)且僅當(dāng)時等號成立.故答案為:15、【解析】根據(jù)雙曲線的定義由焦點坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:16、【解析】曲線的圖形是:以原點為圓心,以2為半徑的圓的左半圓,進(jìn)而可求出結(jié)果.【詳解】解:由得,所以曲線()的圖形是:以原點為圓心,以2為半徑的圓的左半圓,∴曲線()的長度是,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標(biāo)是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.18、(1);(2)詳見解析.【解析】(1)先根據(jù)兩個平均值的大小得到的取值范圍,再利用古典概型的概率公式進(jìn)行求解;(2)先利用最小二乘法求出線性回歸方程,再利用方程進(jìn)行預(yù)測.試題解析:(1)設(shè)被污損的數(shù)字為,則的所有可能取值為:0,1,2,3,4,5,6,7,8,9共10種等可能結(jié)果,令,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的”的取值有0,1,2,3,4,5,6,7共8個,所以其概率為.(2)由表中數(shù)據(jù)得,,∴,線性回歸方程.可預(yù)測年齡為55觀眾周均學(xué)習(xí)成語知識時間為4.9小時.19、(1)證明見解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結(jié)論.(2)以為坐標(biāo)原點,分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,利用向量法求解線面角.【小問1詳解】如圖,連接在正方體中,且因為,分別是,的中點,所以且又因為是的中點,所以,且,所以四邊形是平行四邊形,所以【小問2詳解】以為坐標(biāo)原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,設(shè)為平面的法向量因為,,,所以令,得設(shè)直線與平面所成角為,則因為,所以直線與平面所成角的大小為20、(1)證明見解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標(biāo)系,利用向量法直接可求.【小問1詳解】連接BD,與AC交于點O,在中,因為O,M分別為BD,PD的中點,則,又平面ACM,平面ACM,所以平面ACM.【小問2詳解】設(shè)E是AB的中點,連接PE,因為為正三角形,則,又因為平面底面ABCD,平面平面,則平面ABCD,過點E作EF平行于CB,與CD交于點F,以E為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖所示,則,,,,,,所以,,設(shè)平面CBM的法向量為,則,令,則,因為平面ABCD,則平面ABCD的一個法向量為,所以,所以平面MBC與平面DBC所成角大小為30°21、(1),中位數(shù)為;(2)得分的平均值為,估計有260名學(xué)生獲獎.【解析】(1)根據(jù)給定的頻率分布直方圖,利用各小矩形面積和為1計算得值;再由在中位數(shù)兩側(cè)所對小矩形面積相等即可計算得解.(2)由頻率分布直方圖求平均數(shù)的方法求出得分平均值即可估計;再求出不低于平均分的頻率即可估計獲獎人數(shù).【小問1詳解】由頻率分布直方圖知:,解得,設(shè)此次競賽活動學(xué)生得分的中位數(shù)為,因數(shù)據(jù)落在內(nèi)的頻率為0.4,落在內(nèi)的頻率為0.8,從而可得,由得:,所以,估計此次競賽活動學(xué)生得分的中位數(shù)為.【小問2詳解】由頻率分布直方圖及(1)知:數(shù)據(jù)落在,,,的頻率分別為,,此次競賽活動學(xué)生得分不低于82的頻率為,則,所以估計此次競賽活動得分的平均值為,在參賽的名學(xué)生中估計有260名學(xué)生獲獎.22、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點得出的值,進(jìn)而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達(dá)定理結(jié)合數(shù)量積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論