版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省安慶市潛山二中2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標(biāo)系中,,,若∥,則x的值為()A.3 B.6C.5 D.42.如果橢圓的弦被點平分,那么這條弦所在的直線的方程是()A. B.C. D.3.設(shè)、是橢圓:的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為A. B.C. D.4.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.165.中,,,分別為三個內(nèi)角,,的對邊,若,,,則()A. B.C. D.6.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標(biāo)原點到直線的距離為,則的面積為()A. B.4C. D.7.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20708.不等式的解集為()A.或 B.C. D.9.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.10.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進(jìn)行調(diào)查,欲抽取100名員工,應(yīng)當(dāng)抽取的一般員工人數(shù)為()A.100 B.15C.80 D.5011.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.640012.函數(shù),的最小值為()A.2 B.3C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)橢圓,點在橢圓上,求該橢圓在P處的切線方程______.14.甲口袋中裝有2個黑球和1個白球,乙口袋中裝有3個白球.現(xiàn)同時從甲、乙兩口袋中各任取一個球交換放入對方口袋,共進(jìn)行了2次這樣的操作后,甲口袋中恰有2個黑球的概率為__________________.15.在數(shù)列中,,,則___________.16.圓的圓心坐標(biāo)為___________;半徑為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和.18.(12分)如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,(1)求證:∥平面;(2)求證:平面平面19.(12分)已知是函數(shù)的一個極值點.(1)求實數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.20.(12分)設(shè)為數(shù)列的前n項和,且滿足(1)求證:數(shù)列為等差數(shù)列;(2)若,且成等比數(shù)列,求數(shù)列的前項和21.(12分)設(shè)函數(shù)(1)求的值;(2)求的極大值22.(10分)已知拋物線的焦點為F,其中P為E的準(zhǔn)線上一點,O是坐標(biāo)原點,且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點,在x軸上是否存在定點,使得x軸平分?若存在,求出點M的坐標(biāo);若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D2、B【解析】設(shè)該弦所在直線與橢圓的兩個交點分別為,,則,利用點差法可得答案.【詳解】設(shè)該弦所在直線與橢圓的兩個交點分別為,,則因為,兩式相減可得,,即由中點公式可得,所以,即,所以AB所在直線方程為,即故選:B3、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因為,所以,,所以所以答案選C.考點:橢圓的簡單幾何性質(zhì).4、A【解析】由拋物線的性質(zhì):過焦點的弦長公式計算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因為,所以,所以,故選:A.5、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.6、C【解析】設(shè),根據(jù)題意,可知的方程為直線,根據(jù)原點到直線的距離建立方程,求出,進(jìn)而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設(shè),由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.7、A【解析】根據(jù)累加法得,,進(jìn)而得.【詳解】解:因為所以,當(dāng)時,,,……,,所以,將以上式子相加得,所以,,.當(dāng)時,,滿足;所以,.所以.故選:A8、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A9、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.10、C【解析】按照比例關(guān)系,分層抽取.【詳解】由題意可知,所以應(yīng)當(dāng)抽取的一般員工人數(shù)為.故選:C11、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.12、B【解析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【詳解】由,得,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增∴當(dāng)時,取得最小值,且最小值為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:14、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.15、##.【解析】由遞推關(guān)系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.16、①.②.【解析】配方后可得圓心坐標(biāo)和半徑【詳解】將圓的一般方程化為圓標(biāo)準(zhǔn)方程是,圓心坐標(biāo)為,半徑為故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)與的關(guān)系,分和兩種情況,求出,再判斷是否合并;(2)利用錯位相減法求出數(shù)列的前n項和.【小問1詳解】,當(dāng)時,,當(dāng)時,,也滿足上式,數(shù)列的通項公式為:.【小問2詳解】由(1)可得,①②①②得,18、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)線面平行的判定,證明即可;(2)過C作,垂足為M,根據(jù)勾股定理證明,再根據(jù)線面垂直的性質(zhì)與判定證明平面BCE即可【小問1詳解】證明:因為四邊形ABEF為矩形,所以,又平面BCE,平面BCE,所以平面BCE【小問2詳解】過C作,垂足為M,則四邊形ADCM為矩形因為,,所以,,,,所以,所以因為平面ABCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE19、(1)3(2),【解析】(1)先求出函數(shù)的導(dǎo)數(shù),根據(jù)極值點可得導(dǎo)數(shù)的零點,從而可求實數(shù)的值;(2)由(1)可得函數(shù)的單調(diào)性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調(diào)遞增,在上單調(diào)遞減,故在上為增函數(shù),在上為減函數(shù),.又20、(1)證明見解析;(2)答案見解析.【解析】(1)利用給定的遞推公式,結(jié)合“當(dāng)時,”變形,再利用等差中項的定義推理作答.(2)利用(1)的結(jié)論,利用等比中項的定義列式計算,再利用等差數(shù)列前n項和公式計算作答.【小問1詳解】依題意,,當(dāng)時,有,兩式相減得:,同理可得,于是得,即,而當(dāng)時,,所以數(shù)列為等差數(shù)列.【小問2詳解】由(1)知數(shù)列為等差數(shù)列,設(shè)其首項為,公差為d,依題意,,解得或,當(dāng)時,,當(dāng)時,.21、(1)-3(2)2【解析】(1)利用導(dǎo)數(shù)公式和法則求解;(2)令,利用極大值的定義求解.【小問1詳解】解:因為函數(shù),所以,所以;【小問2詳解】令,得,當(dāng)或時,,當(dāng)時,,所以當(dāng)時,取得極大值.22、(1)(2)存在;【解析】(1)設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年口譯員技能提升及認(rèn)證服務(wù)合同3篇
- 增強(qiáng)現(xiàn)實工程價款組成詳解
- 家政服務(wù)辦事處招聘協(xié)議
- 民宿建設(shè)施工協(xié)議
- 廣告公司創(chuàng)意人員招聘合同
- 建筑檢測凈化工程協(xié)議
- 2025版電力設(shè)施安裝與環(huán)保驗收服務(wù)協(xié)議3篇
- 高空作業(yè)工具協(xié)議
- 礦山通風(fēng)管涵施工協(xié)議
- 貸款審批與風(fēng)險管理
- 社區(qū)宣傳工作方案及措施
- 南昌市南昌縣2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)測試卷(含答案)
- 安全教育主題班會:防恐怖、防極端、防不法侵害
- 乳業(yè)市場督導(dǎo)總結(jié)匯報
- 有機(jī)肥料及微生物肥料生產(chǎn)技術(shù)的創(chuàng)新與發(fā)展
- 銀行市場份額提升方案
- 鎮(zhèn)海煉化線上測評試題
- 2024寧夏高級電工證考試題庫電工理論考試試題(全國通用)
- 浙江省溫州市2022-2023學(xué)年八年級上學(xué)期數(shù)學(xué)期末試題(含答案)
- 網(wǎng)絡(luò)運維從入門到精通29個實踐項目詳解
- 2024屆黃岡市啟黃中學(xué)中考試題猜想數(shù)學(xué)試卷含解析
評論
0/150
提交評論