版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
海南省東方市民族中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的斜率為()A.135° B.45°C.1 D.-12.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.3.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.4.過拋物線的焦點(diǎn)作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.645.已知定義域?yàn)镽的函數(shù)f(x)不是偶函數(shù),則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)6.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點(diǎn).那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.7.“”是“方程表示焦點(diǎn)在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件8.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+9.與向量平行,且經(jīng)過點(diǎn)的直線方程為()A. B.C. D.10.焦點(diǎn)為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.11.已知點(diǎn)在拋物線的準(zhǔn)線上,則該拋物線的焦點(diǎn)坐標(biāo)是()A. B.C. D.12.某救援隊(duì)有5名隊(duì)員,其中有1名隊(duì)長,1名副隊(duì)長,在一次救援中需隨機(jī)分成兩個行動小組,其中一組2名隊(duì)員,另一組3名隊(duì)員,則正、副隊(duì)長不在同一組的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),則___________.14.正三棱柱的底面邊長和高均為2,點(diǎn)為側(cè)棱的中點(diǎn),連接,,則點(diǎn)到平面的距離為______.15.已知函數(shù),則滿足實(shí)數(shù)的取值范圍是__16.已知是橢圓的一個焦點(diǎn),為橢圓上一點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則橢圓的離心率為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為矩形,,,為的中點(diǎn),與交于點(diǎn),平面.(1)若,求與所成角的余弦值;(2)若,求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;(2)當(dāng)時,設(shè),求函數(shù)的單調(diào)區(qū)間.19.(12分)【閱讀材料1】我們在研究兩個變量之間的相關(guān)關(guān)系時,往往先選取若干個樣本點(diǎn)(),(),……,(),將樣本點(diǎn)畫在平面直角坐標(biāo)系內(nèi),就得到樣本的散點(diǎn)圖.觀察散點(diǎn)圖,如果所有樣本點(diǎn)都落在某一條直線附近,變量之間就具有線性相關(guān)關(guān)系,如果所有的樣本點(diǎn)都落在某一非線性函數(shù)圖象附近,變量之間就有非線性相關(guān)關(guān)系.在統(tǒng)計學(xué)中經(jīng)常選擇線性或非線性(函數(shù))回歸模型來刻畫相關(guān)關(guān)系,并且可以用適當(dāng)?shù)姆椒ㄇ蟪龌貧w模型的方程,還常用相關(guān)指數(shù)R2來刻畫回歸的效果,相關(guān)指數(shù)R2的計算公式為:當(dāng)R2越大時,回歸方程的擬合效果越好;當(dāng)R2越小時,回歸方程的擬合效果越差,R2是常用的選擇模型的指標(biāo)之一,在實(shí)際應(yīng)用中應(yīng)該盡量選擇R2較大的回歸模型.【閱讀材料2】2021年6月17日9時22分,我國酒泉衛(wèi)星發(fā)射中心用長征二號F遙十二運(yùn)載火箭,成功將神舟十二號載人飛船送入預(yù)定軌道,順利將聶海勝、劉伯明、湯洪胺3名航天員送入太空,發(fā)射取得圓滿成功,這標(biāo)志著中國人首次進(jìn)入自己的空間站.某公司負(fù)責(zé)生產(chǎn)的A型材料是神舟十二號的重要零件,該材料應(yīng)用前景十分廣泛,該公司為了將A型材料更好地投入商用,擬對A型材料進(jìn)行應(yīng)用改造,根據(jù)市場調(diào)研與模擬,得到應(yīng)用改造投入x(億元)與產(chǎn)品的直接收益y(億元)的數(shù)據(jù)統(tǒng)計如下:序號123456789101112x2346810132122232425y1522274048546068.56867.56665當(dāng)0<x≤13時,建立了與的兩個回歸模型:模型①:;模型②:;當(dāng)x>13時,確定y與x滿足的線性回歸直線方程為.根據(jù)以上閱讀材料,解答以下問題:(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)0<x≤13時模型①,②的相關(guān)指數(shù)R2的大小,并選擇擬合效果更好的模型.回歸模型模型①模型②回歸方程79.1320.2(2)當(dāng)應(yīng)用改造的投入為20億元時,以回歸直線方程為預(yù)測依據(jù),計算公司的收益約為多少.附:①若最小二乘法求得回歸直線方程為,則;②③,當(dāng)時,.20.(12分)為了調(diào)查某蘋果園中蘋果的生長情況,在蘋果園中隨機(jī)采摘了個蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機(jī)采摘個蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個蘋果中隨機(jī)挑出個,這個蘋果的重量情況如下.重量范圍(單位:)個數(shù)為進(jìn)一步了解蘋果的甜度,從這個蘋果中隨機(jī)選出個,記隨機(jī)選出的個蘋果中重量在內(nèi)的個數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.21.(12分)雙曲線的離心率為2,經(jīng)過C的焦點(diǎn)垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設(shè)A,B是C上兩點(diǎn),線段AB的中點(diǎn)為,求直線AB的方程.22.(10分)已知函數(shù)(1)填寫函數(shù)的相關(guān)性質(zhì);定義域值域零點(diǎn)極值點(diǎn)單調(diào)性性質(zhì)(2)通過(1)繪制出函數(shù)的圖像,并討論方程解的個數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由斜截式直接看出直線斜率.【詳解】由題意得:直線斜率為-1,故選:D2、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫?,所以A1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫?,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.3、A【解析】由題可得動點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A4、B【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo),分別設(shè)出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點(diǎn),設(shè)直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當(dāng)且僅當(dāng),即時取等號.所以的最小值為.故選:B5、C【解析】利用偶函數(shù)的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域?yàn)镽的函數(shù)f(x)不是偶函數(shù),∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點(diǎn)睛】本題主要考查偶函數(shù)的定義和全稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】如圖:如圖,取小圓上一點(diǎn),連接并延長交大圓于點(diǎn),連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點(diǎn)是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點(diǎn),小圓上的點(diǎn),恰好滾動到大圓上的也就是此時的小圓與大圓的切點(diǎn).而在小圓中,圓心角(是小圓與的交點(diǎn))恰好等于,則,而點(diǎn)與點(diǎn)其實(shí)是同一個點(diǎn)在不同時刻的位置,則可知點(diǎn)與點(diǎn)是同一個點(diǎn)在不同時刻的位置.由于的任意性,可知點(diǎn)的軌跡是大圓水平的這條直徑.類似的可知點(diǎn)的軌跡是大圓豎直的這條直徑.故選A.7、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點(diǎn)在軸上的橢圓;反之,若方程表示焦點(diǎn)在軸上的橢圓,則;所以“”是“方程表示焦點(diǎn)在x軸上的橢圓”的充要條件.故選:A.8、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B9、A【解析】利用點(diǎn)斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A10、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因?yàn)閽佄锞€的焦點(diǎn)為,可得,解得,所以拋物線的方程為.故選:D.11、C【解析】首先表示出拋物線的準(zhǔn)線,根據(jù)點(diǎn)在拋物線的準(zhǔn)線上,即可求出參數(shù),即可求出拋物線的焦點(diǎn).【詳解】解:拋物線的準(zhǔn)線為因?yàn)樵趻佄锞€的準(zhǔn)線上故其焦點(diǎn)為故選:【點(diǎn)睛】本題考查拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題.12、C【解析】求出基本事件總數(shù)與正、副隊(duì)長不在同一組的基本事件個數(shù),即可求出答案.【詳解】基本事件總數(shù)為正、副隊(duì)長不在同一組的基本事件個數(shù)為故正、副隊(duì)長不在同一組的概率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由的導(dǎo)數(shù)為,將代入,即可求出結(jié)果.【詳解】因?yàn)椋?,所?故答案為:.14、【解析】建立空間直角坐標(biāo)系,利用空間向量求點(diǎn)面距離的公式可以直接求出.【詳解】如圖,建立空間直角坐標(biāo)系,為的中點(diǎn),由已知,,,,,所以,,設(shè)平面的法向量為,,即:,取,得,,則點(diǎn)到平面的距離為.故答案為:.15、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1的討論,當(dāng),解得當(dāng),不存在,當(dāng)時,,解得,故x的范圍為點(diǎn)睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等16、##【解析】根據(jù)題中幾何關(guān)系,求得點(diǎn)坐標(biāo),代入橢圓方程求得齊次式,整理化簡即可求得離心率.【詳解】根據(jù)題意,取點(diǎn)為第一象限的點(diǎn),過點(diǎn)作的垂線,垂足為,如下所示:因?yàn)椤鳛榈冗吶切危?,故可得則點(diǎn)的坐標(biāo)為,代入橢圓方程可得:,又,整理得:,即,解得(舍)或.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以為原點(diǎn),、所在的直線為、軸,以過點(diǎn)垂直于面的直線為軸,建立空間直角坐標(biāo)系,利用空間向量法可求得與所成角的余弦值;(2)計算出平面的法向量,利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】解:如圖,以為原點(diǎn),、所在的直線為、軸,以過點(diǎn)垂直于面的直線為軸,建立空間直角坐標(biāo)系,,,則,則,故,因?yàn)槠矫?,平面,則,若,則,故、、、,則,,.因此,若,則與所成角的余弦值為.【小問2詳解】解:若,則、,,,,設(shè)平面的法向量為,則,取,可得,,所以直線與平面所成角的正弦值為.18、(1);(2)增區(qū)間為,減區(qū)間為.【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)求g(x)導(dǎo)數(shù),導(dǎo)數(shù)同分分解因式,討論其正負(fù)即可判斷g(x)的單調(diào)性.【小問1詳解】當(dāng)時,,則,又,設(shè)所求切線的斜率為,則,則切線的方程為:,化簡即得切線的方程為:.【小問2詳解】,其定義域?yàn)?,,∵,∴ax+1>0,∴當(dāng)時,;當(dāng)時,.的增區(qū)間為,減區(qū)間為.19、(1)模型②擬合效果更好(2)69.1(億元)【解析】(1)分別求出兩個模型的相關(guān)指數(shù),在進(jìn)行比較即可,(2)利用最小二乘法求出回歸方程,再求收益即可【小問1詳解】對于模型①,因?yàn)椋蕦?yīng)的,故對應(yīng)的相關(guān)指數(shù),對于模型②,同理對應(yīng)的相關(guān)指數(shù),故模型②擬合效果更好【小問2詳解】當(dāng)時,后五組的,由最小二乘法可得,所以當(dāng)時,確定y與x滿足的線性回歸直線方程為故當(dāng)投入20億元時,預(yù)測公司的收益約為:(億元)20、(1);(2)分布列答案見解析,數(shù)學(xué)期望為.【解析】(1)利用正態(tài)密度曲線的對稱性結(jié)合已知條件可求得的值;(2)分析可知,隨機(jī)變量的所有可能取值為、、,計算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,進(jìn)一步可求得的值.【小問1詳解】解:已知蘋果的重量(單位:)近似服從正態(tài)分布,由正態(tài)分布的對稱性可知,,所以從蘋果園中隨機(jī)采摘個蘋果,該蘋果的重量在內(nèi)的概率為.【小問2詳解】解:由題意可知,隨機(jī)變量的所有可能取值為、、,,;,所以,隨機(jī)變量的分布列為:所以21、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得的方程.(2)結(jié)合點(diǎn)差法求得直線的斜率,從而求得直線的方程.【小問1詳解】因?yàn)镃的離心率為2,所以,可得.將代入可得,由題設(shè).解得,,,所以C的方程為.【小問2詳解】設(shè),,則,.因此,即.因?yàn)榫€段AB的中點(diǎn)為,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購合同類型的格式要求分享3篇
- 采購合同風(fēng)險問題應(yīng)對與防范3篇
- 采購合同的規(guī)范性3篇
- 采購戰(zhàn)略合同的循環(huán)經(jīng)濟(jì)實(shí)踐3篇
- 采購合同跟蹤的操作指南與策略解析3篇
- 采購合同范本編寫規(guī)范樣式3篇
- 采購合同范本阿里巴巴3篇
- 2024年度智能化項(xiàng)目委托合同模板3篇
- 2024年度鐵礦石國際貿(mào)易市場分析報告合同樣本3篇
- 2024年度贈予科研儀器與借款、租賃科研基地合同3篇
- 走近翻譯學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 3~6歲兒童學(xué)習(xí)與發(fā)展指南(表格形式)
- 2023~2023年壓縮空氣系統(tǒng)質(zhì)量回顧
- 新版三體系管理手冊(過程方法)
- 學(xué)校巡課查課記錄總結(jié)(13篇)
- 2023年高考地理浙江卷試題及答案
- 污水處理廠電氣工程通用技術(shù)要求
- 達(dá)克效應(yīng):需要警惕的48種錯誤思維
- 寧德時代成本管理現(xiàn)狀
- who實(shí)驗(yàn)室生物安全手冊
- 2023年1月浙江省新高考?xì)v史試卷(含解析)
評論
0/150
提交評論