2023-2024學(xué)年北京市對(duì)外經(jīng)貿(mào)大學(xué)附屬中學(xué)高三考前全真數(shù)學(xué)模擬密卷試題試卷_第1頁(yè)
2023-2024學(xué)年北京市對(duì)外經(jīng)貿(mào)大學(xué)附屬中學(xué)高三考前全真數(shù)學(xué)模擬密卷試題試卷_第2頁(yè)
2023-2024學(xué)年北京市對(duì)外經(jīng)貿(mào)大學(xué)附屬中學(xué)高三考前全真數(shù)學(xué)模擬密卷試題試卷_第3頁(yè)
2023-2024學(xué)年北京市對(duì)外經(jīng)貿(mào)大學(xué)附屬中學(xué)高三考前全真數(shù)學(xué)模擬密卷試題試卷_第4頁(yè)
2023-2024學(xué)年北京市對(duì)外經(jīng)貿(mào)大學(xué)附屬中學(xué)高三考前全真數(shù)學(xué)模擬密卷試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年北京市對(duì)外經(jīng)貿(mào)大學(xué)附屬中學(xué)高三考前全真模擬密卷數(shù)學(xué)試題試卷(5)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則集合真子集的個(gè)數(shù)為()A.3 B.4 C.7 D.82.已知函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程是,則()A.2 B.3 C.-2 D.-33.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.4.已知是雙曲線(xiàn)的左右焦點(diǎn),過(guò)的直線(xiàn)與雙曲線(xiàn)的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線(xiàn)的離心率為()A. B. C. D.5.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線(xiàn)與異面B.過(guò)只有唯一平面與平行C.過(guò)點(diǎn)只能作唯一平面與垂直D.過(guò)一定能作一平面與垂直6.做拋擲一枚骰子的試驗(yàn),當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),就說(shuō)這次試驗(yàn)成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗(yàn)中成功次數(shù)X的期望為()A.13 B.17.某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多8.向量,,且,則()A. B. C. D.9.如圖,棱長(zhǎng)為的正方體中,為線(xiàn)段的中點(diǎn),分別為線(xiàn)段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.10.在中,角的對(duì)邊分別為,若.則角的大小為()A. B. C. D.11.已知集合,,,則()A. B. C. D.12.已知集合,定義集合,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線(xiàn)上,且,則向量的坐標(biāo)為_(kāi)__________.14.已知雙曲線(xiàn):(,),直線(xiàn):與雙曲線(xiàn)的兩條漸近線(xiàn)分別交于,兩點(diǎn).若(點(diǎn)為坐標(biāo)原點(diǎn))的面積為32,且雙曲線(xiàn)的焦距為,則雙曲線(xiàn)的離心率為_(kāi)_______.15.已知圓柱的上、下底面的中心分別為,,過(guò)直線(xiàn)的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為_(kāi)_____.16.命題“對(duì)任意,”的否定是.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過(guò)點(diǎn)且斜率存在的直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),,求的取值范圍.18.(12分)在極坐標(biāo)系中,已知曲線(xiàn)C的方程為(),直線(xiàn)l的方程為.設(shè)直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),且,求r的值.19.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的參數(shù)方程是(為參數(shù),常數(shù)),曲線(xiàn)的極坐標(biāo)方程是.(1)寫(xiě)出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線(xiàn);(2)若直線(xiàn)與曲線(xiàn),均相切且相切于同一點(diǎn),求直線(xiàn)的極坐標(biāo)方程.20.(12分)某公司打算引進(jìn)一臺(tái)設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺(tái)10000元,乙設(shè)備每臺(tái)9000元.此外設(shè)備使用期間還需維修,對(duì)于每臺(tái)設(shè)備,一年間三次及三次以?xún)?nèi)免費(fèi)維修,三次以外的維修費(fèi)用均為每次1000元.該公司統(tǒng)計(jì)了曾使用過(guò)的甲、乙各50臺(tái)設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺(tái)中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺(tái)購(gòu)買(mǎi)和一年間維修的花費(fèi)總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購(gòu)買(mǎi)和一年間維修的花費(fèi)總額盡量低,且維修次數(shù)盡量少,則需要購(gòu)買(mǎi)哪種設(shè)備?請(qǐng)說(shuō)明理由.21.(12分)的內(nèi)角所對(duì)的邊分別是,且,.(1)求;(2)若邊上的中線(xiàn),求的面積.22.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點(diǎn)T為圓心作圓,設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.(1)求橢圓C的方程;(2)求的最小值,并求此時(shí)圓T的方程;(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線(xiàn)MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

解出集合,再由含有個(gè)元素的集合,其真子集的個(gè)數(shù)為個(gè)可得答案.【詳解】解:由,得所以集合的真子集個(gè)數(shù)為個(gè).故選:C【點(diǎn)睛】此題考查利用集合子集個(gè)數(shù)判斷集合元素個(gè)數(shù)的應(yīng)用,含有個(gè)元素的集合,其真子集的個(gè)數(shù)為個(gè),屬于基礎(chǔ)題.2.B【解析】

根據(jù)求出再根據(jù)也在直線(xiàn)上,求出b的值,即得解.【詳解】因?yàn)?,所以所以,又也在直線(xiàn)上,所以,解得所以.故選:B【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.3.D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長(zhǎng)為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.4.D【解析】

根據(jù)雙曲線(xiàn)的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線(xiàn)的離心率,解題關(guān)鍵是應(yīng)用雙曲線(xiàn)的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.5.D【解析】

根據(jù)異面直線(xiàn)的判定定理、定義和性質(zhì),結(jié)合線(xiàn)面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線(xiàn)與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線(xiàn)的性質(zhì)知,過(guò)只有唯一平面與平行,故正確.C.根據(jù)過(guò)一點(diǎn)有且只有一個(gè)平面與已知直線(xiàn)垂直知,故正確.D.根據(jù)異面直線(xiàn)的性質(zhì)知,過(guò)不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線(xiàn)的定義,性質(zhì)以及線(xiàn)面關(guān)系,還考查了理解辨析的能力,屬于中檔題.6.C【解析】

每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點(diǎn)睛】本題考查了二項(xiàng)分布求數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.7.D【解析】

根據(jù)兩個(gè)圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項(xiàng)的真假.【詳解】在A中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的,所以是正確的;在C中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點(diǎn)睛】本題主要考查了命題的真假判定,以及統(tǒng)計(jì)圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識(shí)的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8.D【解析】

根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.9.D【解析】

取中點(diǎn),過(guò)作面,可得為等腰直角三角形,由,可得,當(dāng)時(shí),最小,由,故,即可求解.【詳解】取中點(diǎn),過(guò)作面,如圖:則,故,而對(duì)固定的點(diǎn),當(dāng)時(shí),最小.此時(shí)由面,可知為等腰直角三角形,,故.故選:D【點(diǎn)睛】本題考查了空間幾何體中的線(xiàn)面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.10.A【解析】

由正弦定理化簡(jiǎn)已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.11.D【解析】

根據(jù)集合的基本運(yùn)算即可求解.【詳解】解:,,,則故選:D.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.12.C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因?yàn)榧?,所以,則,所以.故選:C.【點(diǎn)睛】本題考查集合的新定義運(yùn)算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

點(diǎn)在的平分線(xiàn)可知與向量共線(xiàn),利用線(xiàn)性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線(xiàn)上,所以存在使,而,可解得,所以,故答案為:【點(diǎn)睛】本題主要考查了向量的線(xiàn)性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.14.或【解析】

用表示出的面積,求得等量關(guān)系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線(xiàn)的焦距為知,,所以.聯(lián)立解得或故雙曲線(xiàn)的離心率為或.故答案為:或.【點(diǎn)睛】本題考查雙曲線(xiàn)的方程與性質(zhì),考查運(yùn)算求解能力以及函數(shù)與方程思想,屬中檔題.15.【解析】

設(shè)圓柱的軸截面的邊長(zhǎng)為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長(zhǎng)為x,則由,得,∴.故答案為:【點(diǎn)睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16.存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】

(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線(xiàn)和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡(jiǎn)得的軌跡的方程為.(2)設(shè)直線(xiàn)的方程為,與的方程聯(lián)立,消去得,,設(shè),,則,,由已知,,則,故直線(xiàn).,令,則,由于,,.所以,的取值范圍為.【點(diǎn)睛】此題考查軌跡問(wèn)題,橢圓和直線(xiàn)相交,注意坐標(biāo)表示向量進(jìn)行轉(zhuǎn)化的處理技巧,屬于較難題目.18.【解析】

先將曲線(xiàn)C和直線(xiàn)l的極坐標(biāo)方程化為直角坐標(biāo)方程,可得圓心到直線(xiàn)的距離,再由勾股定理,計(jì)算即得.【詳解】以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,可得曲線(xiàn)C:()的直角坐標(biāo)方程為,表示以原點(diǎn)為圓心,半徑為r的圓.由直線(xiàn)l的方程,化簡(jiǎn)得,則直線(xiàn)l的直角坐標(biāo)方程方程為.記圓心到直線(xiàn)l的距離為d,則,又,即,所以.【點(diǎn)睛】本題考查曲線(xiàn)和直線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,是基礎(chǔ)題.19.(1),,表示以為圓心為半徑的圓;為拋物線(xiàn);(2)【解析】

(1)消去參數(shù)的直角坐標(biāo)方程,利用,即得的直角坐標(biāo)方程;(2)由直線(xiàn)與拋物線(xiàn)相切,求導(dǎo)可得切線(xiàn)斜率,再由直線(xiàn)與圓相切,故切線(xiàn)與圓心與切點(diǎn)連線(xiàn)垂直,可求解得到切點(diǎn)坐標(biāo),即得解.【詳解】(1)消去參數(shù)的直角坐標(biāo)方程為:.的極坐標(biāo)方程.∵,.當(dāng)時(shí)表示以為圓心為半徑的圓;為拋物線(xiàn).(2)設(shè)切點(diǎn)為,由于,則切線(xiàn)斜率為,由于直線(xiàn)與圓相切,故切線(xiàn)與圓心與切點(diǎn)連線(xiàn)垂直,故有,直線(xiàn)的直角坐標(biāo)方程為,所以的極坐標(biāo)方程為.【點(diǎn)睛】本題考查了極坐標(biāo),參數(shù)方程綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1)分布列見(jiàn)解析,分布列見(jiàn)解析;(2)甲設(shè)備,理由見(jiàn)解析【解析】

(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計(jì)算概率得到分布列;(2)計(jì)算期望,得到,設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,,計(jì)算分布列,計(jì)算數(shù)學(xué)期望得到答案.【詳解】(1)的可能取值為10000,11000,12000,,因此的分布如下100001100012000的可能取值為9000,10000,11000,12000,,,因此的分布列為如下9000100001100012000(2)設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,的可能取值為2,3,4,5,,,則的分布列為2345的可能取值為3,4,5,6,,,則的分布列為3456由于,,因此需購(gòu)買(mǎi)甲設(shè)備【點(diǎn)睛】本題考查了數(shù)學(xué)期望和分布列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.21.(1),(2)【解析】

(1)先由正弦定理,得到,進(jìn)而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進(jìn)而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因?yàn)?,所以,即,所以,又因?yàn)?,所以?(2)在和中,由余弦定理得,.因?yàn)?,,,,又因?yàn)?,即,所以,所以,又因?yàn)?,所?所以的面積.【點(diǎn)睛】本題主要考查解三角形,靈活運(yùn)用正弦定理和余弦定理即可,屬于??碱}型.22.(1);(2);(3)【解析】

(1)依題意,得,,由

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論