版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆海東市重點中學高二數(shù)學第一學期期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于的不等式的解集為,則關于的不等式的解集為A. B.C. D.2.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.3.已知數(shù)列的前n項和為,,,則()A. B.C.1025 D.20494.設是數(shù)列的前項和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列5.今天是星期四,經過天后是星期()A.三 B.四C.五 D.六6.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.函數(shù),若實數(shù)是函數(shù)的零點,且,則()A. B.C. D.無法確定8.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負數(shù),為真命題9.在等比數(shù)列中,,則等于()A. B.C. D.10.已知函數(shù),若,,則實數(shù)的取值范圍是A. B.C. D.11.,則與分別為()A.與 B.與C.與0 D.0與12.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的左、右焦點為,,直線與雙曲線交于兩點,且,為坐標原點,又,則該雙曲線的離心率為__________.14.若直線與平行,則實數(shù)________.15.函數(shù)滿足,且,則的最小值為___________.16.已知拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,則p=__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的前項和記為,已知.(1)求的通項公式:(2)求,并求為何值時的值最大.18.(12分)已知各項均為正數(shù)的等差數(shù)列滿足,且,,構成等比數(shù)列的前三項.(1)求數(shù)列,的通項公式;(2)設,求數(shù)列的前項和.19.(12分)已知圓C經過坐標原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值20.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且,求平面MAP與平面CAP所成角的大小.21.(12分)有三個條件:①數(shù)列的任意相鄰兩項均不相等,,且數(shù)列為常數(shù)列,②,③,,中,從中任選一個,補充在下面橫線上,并回答問題已知數(shù)列的前n項和為,______,求數(shù)列的通項公式和前n項和22.(10分)已知圓M經過點F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過點(-1,0)的直線l與曲線C交于A,B兩點,若,求直線l的斜率k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設,解集為所以二次函數(shù)圖像開口向下,且與交點為,由韋達定理得所以的解集為,故選B.2、B【解析】由題設命題的描述判斷、的真假,再判斷其復合命題的真假即可.【詳解】對于命題,僅當時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B3、B【解析】根據題意得,進而根據得數(shù)列是等比數(shù)列,公比為,首項為,再根據等比數(shù)列求和公式求解即可.【詳解】解:因為數(shù)列的前n項和為滿足,所以當時,,解得,當時,,即所以,解得或,因為,所以.所以,,所以當時,,所以,即所以數(shù)列是等比數(shù)列,公比為,首項為,所以故選:B4、B【解析】根據與的關系求出通項,然后可知答案.【詳解】當時,,當時,,綜上,的通項公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B5、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經過天后是星期五,故選:6、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.7、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實數(shù)是函數(shù)的零點,即,又因為,所以,故選:A8、A【解析】根據存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A9、C【解析】根據,然后與,可得,最后簡單計算,可得結果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點睛】本題考查等比數(shù)列的性質,重在計算,當,在等差數(shù)列中有,在等比數(shù)列中,靈活應用,屬基礎題.10、A【解析】函數(shù),若,,可得,解得或,則實數(shù)的取值范圍是,故選A.11、C【解析】利用正弦函數(shù)和常數(shù)導數(shù)公式,結合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C12、A【解析】先求出,利用等比中項求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當時,,不符合等比數(shù)列的定義,應舍去,故.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據直線和雙曲線的對稱性,結合圓的性質、雙曲線的定義、三角形面積公式、雙曲線離心率公式進行求解即可.【詳解】由直線與雙曲線的對稱性可知,點與點關于原點對稱,在三角形中,,所以,是以為直徑的圓與雙曲線的交點,不妨設在第一象限,,因為圓是以為直徑,所以圓的半徑為,因為點在圓上,也在雙曲線上,所以有,聯(lián)立化簡可得,整理得,,所以,由所以,又因為,聯(lián)立可得,,因為為圓的直徑,所以,即,,所以離心率.故答案為:【點睛】關鍵點睛:利用直線和雙曲線的對稱性,結合圓的性質進行求解是解題的關鍵.14、【解析】根據兩直線平行可得出關于實數(shù)的等式與不等式,即可解得實數(shù)的值.【詳解】因為,則,解得.故答案為:.15、6【解析】化簡得出,由化簡后根據均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當且僅當時取等號),所以的最小值為6.故答案為:616、2【解析】根據已知條件,結合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)當或時,的值最大.【解析】(1)根據等差數(shù)列前項和公式,結合等差數(shù)列的通項公式進行求解即可;(2)根據等差數(shù)列的性質進行求解即可.【小問1詳解】設等差數(shù)列的公差為,因為,所以有,即;【小問2詳解】由(1)可知,所以該數(shù)列是遞減數(shù)列,而,當時,解得:,因此當或時,的值最大.18、(1),,;(2).【解析】(1)由等差中項的性質可求出,又,,構成等比數(shù)列,設出公差,代入可求出,從而求出數(shù)列的通項公式,代入可求出,的值,從而求出數(shù)列的通項公式;(2)將通項公式代入,運用裂項相消的方法可求出前項和.【詳解】解析:(1)因為等差數(shù)列中,,所以,設數(shù)列公差為,因為,,構成等比數(shù)列,則,即,解得或(舍)即,又等比數(shù)列中,,所以,;(2)∵,∴,∴【點睛】易錯點睛:(1)裂項相消時一定要注意分母的差,一般情況下分母的差是幾,則要在裂項前面乘以幾分之一;(2)裂項相消時要注意保留的項數(shù).19、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進而利用垂徑定理求出弦長.【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設圓心(2,0)到l的距離為d,則,由垂徑定理得:20、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標原點,分別為軸的空間直角坐標系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點,則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標原點,分別為軸的空間直角坐標系如圖所示,則,,,,則平面的法向量為,由已知,得到點坐標,,設平面的法向量則,令,則,即,設平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.21、;【解析】選①,由數(shù)列為常數(shù)列可得,由此可求,根據任意相鄰兩項均不相等可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選②由取可求,再取與原式相減可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選③由取與原式相減可得,取可求,由此可得,故,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,【詳解】解:選①:因為,數(shù)列為常數(shù)列,所以,解得或,又因為數(shù)列的任意相鄰兩項均不相等,且,所以數(shù)列為2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以為首項,公比為-1的等比數(shù)列,所以,即;所以選②:因為,易知,,所以兩式相減可得,即,以下過程與①相同;選③:由,可得,又,時,,所以,因為,所以也滿足上式,所以,即,以下過程與①相同22、(1);(2).【解析】(1)設圓心,軌跡兩點的距離公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告行業(yè)信息真實性準則
- 采購合同跟單中的問題排查與優(yōu)化3篇
- 采購合同違約責任3篇
- 采購合同協(xié)議格式指南3篇
- 采購合同與管理的最佳實踐3篇
- 采購合同和采購訂單的績效評估3篇
- 2024年度美術作品展覽策劃與藝術贊助協(xié)議3篇
- 采購合同皮草的交貨期限3篇
- 采購合同風險問題探討與思考3篇
- 新型生物降解材料在廢物處理中的應用-洞察分析
- DB45T 2760-2023 電子政務外網網絡技術規(guī)范
- 2025版中考物理復習課件 09 專題五 類型3 電學綜合應用題(不含效率)(10年6考)
- 2024年度承包合同:石灰石生產線承包2篇
- 2024年度社區(qū)養(yǎng)老社會工作服務項目協(xié)議書3篇
- 青海省西寧市2021-2022學年八年級上學期期末歷史試題(解析版)
- 2024統(tǒng)編版七年級上冊語文期末復習:名著閱讀 練習題匯編(含答案解析)
- 人力資源規(guī)劃
- 《北京大學介紹》課件
- 夜泊牛渚懷古
- 關于家長與學生評議教師制度
- 《大學生職業(yè)生涯規(guī)劃與就業(yè)指導》教學教案
評論
0/150
提交評論