版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川省眉山市仁壽縣數(shù)學(xué)高二上期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為()A. B.C. D.2.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.焦距相等 D.離心率相等3.《周髀算經(jīng)》有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個(gè)節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長(zhǎng)為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸4.如果,那么下面一定成立的是()A. B.C. D.5.如圖,在長(zhǎng)方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.6.已知點(diǎn),是橢圓:的左、右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?8.函數(shù)在處的切線方程為()A. B.C. D.9.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.10.曲線在處的切線如圖所示,則()A.0 B.C. D.11.空間直角坐標(biāo)系中,已知?jiǎng)t點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為()A. B.C. D.12.德國(guó)數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時(shí)就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時(shí),他在進(jìn)行的求和運(yùn)算時(shí),就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.99二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則__________.14.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為__________________15.函數(shù)的單調(diào)遞減區(qū)間是___________.16.已知實(shí)數(shù)滿足,則的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓的上頂點(diǎn)到焦點(diǎn)的距離為.(1)求橢圓的方程;(2)若直線與橢圓相交于、兩點(diǎn)(、不是左、右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn).18.(12分)已知拋物線C:上一點(diǎn)與焦點(diǎn)F的距離為(1)求和p的值;(2)直線l:與C相交于A,B兩點(diǎn),求直線AM,BM的斜率之積19.(12分)中國(guó)共產(chǎn)黨建黨100周年華誕之際,某高校積極響應(yīng)黨和國(guó)家的號(hào)召,通過“增強(qiáng)防疫意識(shí),激發(fā)愛國(guó)情懷”知識(shí)競(jìng)賽活動(dòng),來回顧中國(guó)共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達(dá)對(duì)建黨100周年以來的豐功偉績(jī)的傳頌.教務(wù)處為了解學(xué)生對(duì)相關(guān)知識(shí)的掌握情況,隨機(jī)抽取了100名學(xué)生的競(jìng)賽成績(jī),并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計(jì)中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學(xué)校參與省里的此類比賽,你認(rèn)為怎么選最合理,并說明理由20.(12分)在平面直角坐標(biāo)系中,已知直線(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.21.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明22.(10分)圓心為的圓經(jīng)過點(diǎn),,且圓心在上,(1)求圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作直線交圓于且,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由直線平行及直線所過的點(diǎn),應(yīng)用點(diǎn)斜式寫出直線方程即可.【詳解】與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為,整理得故選:C2、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C3、D【解析】結(jié)合等差數(shù)列知識(shí)求得正確答案.【詳解】設(shè)冬至日影長(zhǎng),公差為,則,所以立夏日影長(zhǎng)丈,即四尺五寸.故選:D4、C【解析】根據(jù)不等式的基本性質(zhì),以及特例法和作差比較法,逐項(xiàng)計(jì)算,即可求解.【詳解】對(duì)于A中,當(dāng)時(shí),,所以不正確;對(duì)于B中,因?yàn)椋鶕?jù)不等式的性質(zhì),可得,對(duì)于C中,由,可得可得,所以,所以正確;對(duì)于D中,由,可得,則,所以,所以不正確.故選:C.5、D【解析】根據(jù)長(zhǎng)方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長(zhǎng)方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.6、D【解析】設(shè),先求出點(diǎn),得,化簡(jiǎn)即得解【詳解】由題意可知橢圓的焦點(diǎn)在軸上,如圖所示,設(shè),則,∵為等腰三角形,且,∴.過作垂直軸于點(diǎn),則,∴,,即點(diǎn).∵點(diǎn)在過點(diǎn)且斜率為的直線上,∴,解得,∴.故選:D【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關(guān)于離心率的方程解方程即得解).7、C【解析】本題為計(jì)算前項(xiàng)和,模擬程序,實(shí)際計(jì)算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項(xiàng)和.易知,則,令,解得.即前7項(xiàng)的和.為故判斷框中應(yīng)填入“?”.故選:C.8、C【解析】利用導(dǎo)數(shù)的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒9、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C10、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經(jīng)過,,可求出直線方程為:∵在處的切線∴,∴故選:C【點(diǎn)睛】用導(dǎo)數(shù)求切線方程常見類型:(1)在出的切線:為切點(diǎn),直接寫出切線方程:;(2)過出的切線:不是切點(diǎn),先設(shè)切點(diǎn),聯(lián)立方程組,求出切點(diǎn)坐標(biāo),再寫出切線方程:.11、D【解析】根據(jù)空間直角坐標(biāo)系的對(duì)稱性可得答案.【詳解】根據(jù)空間直角坐標(biāo)系的對(duì)稱性可得關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為,故選:D.12、C【解析】令,利用倒序相加原理計(jì)算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題,用累乘法求得通項(xiàng)公式:,則,通過裂項(xiàng)求和即可得出結(jié)果.【詳解】由題,所以累乘法求通項(xiàng)公式:,所以,經(jīng)驗(yàn)證時(shí),符合.所以,則.故答案為:14、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.15、【解析】首先對(duì)求導(dǎo),可得,令,解可得答案【詳解】解:由得,故的單調(diào)遞減區(qū)間是故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.16、【解析】去絕對(duì)值分別列出每個(gè)象限解析式,數(shù)形結(jié)合利用距離求解范圍.【詳解】當(dāng),表示橢圓第一象限部分;當(dāng),表示雙曲線第四象限部分;當(dāng),表示雙曲線第二象限部分;當(dāng),不表示任何圖形;以及兩點(diǎn),作出大致圖象如圖:曲線上的點(diǎn)到的距離為,根據(jù)雙曲線方程可得第二四象限雙曲線漸近線方程都是,與距離為2,曲線二四象限上的點(diǎn)到的距離為小于且無限接近2,考慮曲線第一象限的任意點(diǎn)設(shè)為到的距離,當(dāng)時(shí)取等號(hào),所以,則的取值范圍是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件求出、、的值,可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出關(guān)于、所滿足的等式,然后化簡(jiǎn)直線的方程,即可求得直線所過定點(diǎn)的坐標(biāo).【小問1詳解】解:橢圓上頂點(diǎn)到焦點(diǎn)距離,又橢圓離心率為,故,,因此,橢圓方程為.【小問2詳解】解:設(shè)、,由題意可知且,橢圓的右頂點(diǎn)為,則,,因?yàn)橐詾橹睆降膱A過橢圓的右頂點(diǎn),所以有,則,即,聯(lián)立,,即,①由韋達(dá)定理得,,所以,,化簡(jiǎn)得,即或,均滿足①式.當(dāng)時(shí),直線,恒過定點(diǎn),舍去;當(dāng)時(shí),直線,恒過定點(diǎn).綜上所述,直線過定點(diǎn).【點(diǎn)睛】方法點(diǎn)睛:求解直線過定點(diǎn)問題常用方法如下:(1)“特殊探路,一般證明”:即先通過特殊情況確定定點(diǎn),再轉(zhuǎn)化為有方向、有目的的一般性證明;(2)“一般推理,特殊求解”:即設(shè)出定點(diǎn)坐標(biāo),根據(jù)題設(shè)條件選擇參數(shù),建立一個(gè)直線系或曲線的方程,再根據(jù)參數(shù)的任意性得到一個(gè)關(guān)于定點(diǎn)坐標(biāo)的方程組,以這個(gè)方程組的解為坐標(biāo)的點(diǎn)即為所求點(diǎn);(3)求證直線過定點(diǎn),常利用直線的點(diǎn)斜式方程或截距式來證明.18、(1)(2)【解析】(1)結(jié)合拋物線的定義以及點(diǎn)坐標(biāo)求得以及.(2)求得的坐標(biāo),由此求得直線AM,BM的斜率之積.【小問1詳解】依題意拋物線C:上一點(diǎn)與焦點(diǎn)F的距離為,根據(jù)拋物線的定義可知,將點(diǎn)坐標(biāo)代入拋物線方程得.【小問2詳解】由(1)得拋物線方程為,,不妨設(shè)A在B下方,所以.19、(1);中位數(shù)所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解析】(1)根據(jù)頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據(jù)各組的頻率,即可分析中位數(shù)所在區(qū)間.(2)計(jì)算可得之間共有6人,滿足題意,分析即可得答案.【小問1詳解】,解得成績(jī)?cè)趨^(qū)間上的頻率為,,所以中位數(shù)所在區(qū)間,【小問2詳解】選成績(jī)最好的同學(xué)去參賽,分?jǐn)?shù)在之間共有人,所以選90分以上的人去參賽.(其它方案如果合理也可以給分)20、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標(biāo)公式得曲線的直角坐標(biāo)方程.(2)將代入曲線C的直角坐標(biāo)方程得,再利用直線參數(shù)方程t的幾何意義和韋達(dá)定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標(biāo)方程為②(2)將代入②式,得,點(diǎn)M的直角坐標(biāo)為(0,3),設(shè)這個(gè)方程的兩個(gè)實(shí)數(shù)根分別為t1,t2,則∴t1<0,t2<0則由參數(shù)t的幾何意義即得.【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的互化、直線參數(shù)方程t的幾何意義,屬于基礎(chǔ)題.21、(1)答案見解析(2)證明見解析【解析】(1)求導(dǎo)得,進(jìn)而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進(jìn)而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進(jìn)而得時(shí),,即不等式成立.【小問1詳解】解:函數(shù)的定義域?yàn)椋?,∴?dāng)時(shí),在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當(dāng)時(shí),由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】證明:因?yàn)闀r(shí),證明,只需證明,由(1)知,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以.所以時(shí),,所以當(dāng)時(shí),22、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點(diǎn)坐標(biāo)即為圓心坐標(biāo),再求得半徑后可得圓的標(biāo)準(zhǔn)方程;(2)檢驗(yàn)直線斜率不存在時(shí)是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃商業(yè)用房合同三篇
- 化工行業(yè)員工安全培訓(xùn)方案實(shí)施
- 制造行業(yè)安全管理工作總結(jié)
- 2023年高考語(yǔ)文試卷(天津)(空白卷)
- 2024年美術(shù)教案集錦7篇
- 2024年電力通信設(shè)備運(yùn)檢員理論備考試題庫(kù)及答案
- 創(chuàng)意設(shè)計(jì)人才中介合同(2篇)
- 黃金卷8-【贏在中考·黃金八卷】(解析版)
- 2025新生入學(xué)貸款還款協(xié)議合同
- 2024年度四川省公共營(yíng)養(yǎng)師之四級(jí)營(yíng)養(yǎng)師能力測(cè)試試卷B卷附答案
- 火力發(fā)電廠有關(guān)職業(yè)病的危害及防護(hù)
- 民主測(cè)評(píng)票(三種樣式)
- 班車安全檢查表(2015-7-14)V3 0 (2)
- 城投集團(tuán)年度安全管理工作計(jì)劃
- 一、 行業(yè)協(xié)會(huì)申請(qǐng)?jiān)O(shè)立分支機(jī)構(gòu)、代表機(jī)構(gòu)應(yīng)提交的文件:
- 幼兒園幼兒園理事會(huì)成員一覽表
- 學(xué)生對(duì)課堂教學(xué)滿意度調(diào)查
- 住房公積金中心窗口人員個(gè)人工作總結(jié)
- 集成電路單粒子效應(yīng)評(píng)估技術(shù)研究PPT課件
- 幼兒園小班生成活動(dòng)教案20篇
- 講師與平臺(tái)的合作協(xié)議
評(píng)論
0/150
提交評(píng)論