版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆江西省宜春市豐城中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線:(,)的右頂點(diǎn)為,右焦點(diǎn)為,為雙曲線在第二象限上的點(diǎn),直線交雙曲線于另一個(gè)點(diǎn)(為坐標(biāo)原點(diǎn)),若直線平分線段,則雙曲線的離心率為()A. B.C. D.2.某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中學(xué)生中抽取容量為50的樣本,則應(yīng)從高三年級抽取的學(xué)生數(shù)為()A.10 B.15C.20 D.303.已知點(diǎn),動點(diǎn)P滿足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓4.已知圓和橢圓.直線與圓交于、兩點(diǎn),與橢圓交于、兩點(diǎn).若時(shí),的取值范圍是,則橢圓的離心率為()A. B.C. D.5.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計(jì)的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.6.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對立的兩個(gè)事件是()A.“至少有1個(gè)白球”和“都是紅球”B.“至少有2個(gè)白球”和“至多有1個(gè)紅球”C.“恰有1個(gè)白球”和“恰有2個(gè)白球”D.“至多有1個(gè)白球”和“都是紅球”7.已知函數(shù),若對任意兩個(gè)不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.8.函數(shù)的定義域?yàn)?,,對任意,,則的解集為()A. B.C. D.9.圓心在x軸負(fù)半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.10.已知拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.911.在三棱錐中,點(diǎn)E,F(xiàn)分別是的中點(diǎn),點(diǎn)G在棱上,且滿足,若,則()A. B.C. D.12.化學(xué)中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學(xué)中,可將晶體結(jié)構(gòu)截分為一個(gè)個(gè)包含等同內(nèi)容的基本單位,這個(gè)基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點(diǎn)位置,O原子位于棱的中點(diǎn)).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn),若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是___________.14.已知O為坐標(biāo)原點(diǎn),,是拋物線上的兩點(diǎn),且滿足,則______;若OM垂直AB于點(diǎn)M,且為定值,則點(diǎn)Q的坐標(biāo)為__________.15.若是直線外一點(diǎn),為線段的中點(diǎn),,,則______16.如圖所示,高爾頓釘板是一個(gè)關(guān)于概率的模型,每一黑點(diǎn)表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時(shí),將隨機(jī)的向兩邊等概率的落下.當(dāng)有大量的小球都落下時(shí),最終在釘板下面不同位置收集到小球.現(xiàn)有5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號位置的概率是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為.求證:18.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}滿足:點(diǎn)(n,bn)在曲線y=上,a1=b4,___,數(shù)列{}的前n項(xiàng)和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個(gè)條件中任選一個(gè),補(bǔ)充到上面問題的橫線上并作答(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)是否存在正整數(shù)k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由19.(12分)橢圓的左右焦點(diǎn)分別為,,焦距為,為原點(diǎn).橢圓上任意一點(diǎn)到,距離之和為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的斜率為2的直線交橢圓于、兩點(diǎn),求的面積.20.(12分)已知函數(shù),求函數(shù)在上的最大值與最小值.21.(12分)某校高二年級全體學(xué)生參加了一次數(shù)學(xué)測試,學(xué)校利用簡單隨機(jī)抽樣方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,求此兩人都來自甲班的概率.22.(10分)已知直線和直線(1)若時(shí),求a的值;(2)當(dāng)平行,求兩直線,的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由給定條件寫出點(diǎn)A,F(xiàn)坐標(biāo),設(shè)出點(diǎn)B的坐標(biāo),求出線段FC的中點(diǎn)坐標(biāo),由三點(diǎn)共線列式計(jì)算即得.【詳解】令雙曲線的半焦距為c,點(diǎn),設(shè),由雙曲線對稱性得,線段FC的中點(diǎn),因直線平分線段,即點(diǎn)D,A,B共線,于是有,即,即,離心率.故選:A2、C【解析】根據(jù)抽取比例乘以即可求解.【詳解】由題意可得應(yīng)從高三年級抽取的學(xué)生數(shù)為,故選:C.3、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.4、C【解析】由題設(shè),根據(jù)圓與橢圓的對稱性,假設(shè)在第一象限可得,結(jié)合已知有,進(jìn)而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時(shí),的取值范圍是,結(jié)合圓與橢圓的對稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無窮大時(shí),,故,∴故選:C.5、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.6、C【解析】結(jié)合互斥事件與對立事件的概念,對選項(xiàng)逐個(gè)分析可選出答案.【詳解】對于選項(xiàng)A,“至少有1個(gè)白球”和“都是紅球”是對立事件,不符合題意;對于選項(xiàng)B,“至少有2個(gè)白球”表示取出2個(gè)球都是白色的,而“至多有1個(gè)紅球”表示取出的球1個(gè)紅球1個(gè)白球,或者2個(gè)都是白球,二者不是互斥事件,不符合題意;對于選項(xiàng)C,“恰有1個(gè)白球”表示取出2個(gè)球1個(gè)紅球1個(gè)白球,與“恰有2個(gè)白球”是互斥而不對立的兩個(gè)事件,符合題意;對于選項(xiàng)D,“至多有1個(gè)白球”表示取出的2個(gè)球1個(gè)紅球1個(gè)白球,或者2個(gè)都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點(diǎn)睛】本題考查了互斥事件和對立事件的定義的運(yùn)用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.7、A【解析】將已知條件轉(zhuǎn)化為時(shí)恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時(shí),,當(dāng)時(shí)恒成立,
,當(dāng)時(shí)恒成立,,故選:A8、B【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)在上的單調(diào)性,將不等式轉(zhuǎn)化為,利用函數(shù)的單調(diào)性即可求解.【詳解】依題意可設(shè),所以.所以函數(shù)在上單調(diào)遞增,又因?yàn)?所以要使,即,只需要,故選B.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性解不等式,解題的關(guān)鍵就是利用導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造新函數(shù)來解,考查分析問題和解決問題的能力,屬于中等題.9、A【解析】根據(jù)題意,設(shè)圓心為坐標(biāo)為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設(shè)圓心為坐標(biāo)為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標(biāo)為,故所求圓的方程為,故選:A10、A【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.11、B【解析】利用空間向量的加、減運(yùn)算即可求解.【詳解】由題意可得故選:B.12、C【解析】如圖所示,以為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計(jì)算點(diǎn)漸近線的距離,從而得,由勾股定理計(jì)算,由雙曲線定義列式,從而計(jì)算得,即可計(jì)算出離心率.【詳解】設(shè)雙曲線右焦點(diǎn)為,因?yàn)榈闹悬c(diǎn)在雙曲線的漸近線上,由可知,,因?yàn)闉橹悬c(diǎn),所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點(diǎn)睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)14、①.-24②.【解析】由拋物線的方程及數(shù)量積的運(yùn)算可求出,設(shè)直線AB的方程為,聯(lián)立拋物線方程,由根與系數(shù)的關(guān)系可求出,由圓的定義求出圓心即可.【詳解】由,即解得或(舍去).設(shè)直線AB的方程為.由,消去x并整理得,.又,,直線AB恒過定點(diǎn)N(6,0),OM垂直AB于點(diǎn)M,點(diǎn)M在以O(shè)N為直徑圓上.|MQ|為定值,點(diǎn)Q為該圓的圓心,又即Q(3,0).故答案為:;15、【解析】根據(jù)題意得到,進(jìn)而得到,求得的值,即可求解.【詳解】因?yàn)闉榫€段的中點(diǎn),所以,所以,又因?yàn)椋?,所以故答案為?16、【解析】先研究一個(gè)小球從正上方落下的情況,從而可求出一個(gè)小球從正上方落下落到2號位置的概率,進(jìn)而可求出5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號位置的概率【詳解】如圖所示,先研究一個(gè)小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號位置的有4種,所以每個(gè)球落入2號位置的概率為,所以5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號位置的概率為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)證明見解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得,結(jié)合數(shù)列的單調(diào)性可證得結(jié)論成立.【小問1詳解】證明:當(dāng)時(shí),,解得,當(dāng)時(shí),由可得,上述兩個(gè)等式作差得,所以,,則,因?yàn)?,則,可得,,,以此類推,可知對任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項(xiàng)為,公比為,所以,,解得.【小問2詳解】證明:,則,其中,所以,數(shù)列為單調(diào)遞減數(shù)列,則,,,上式下式,得,所以,,因此,.18、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(diǎn)(n,bn)代入曲線y=可得到bn=25﹣n,進(jìn)而求出a1,設(shè)等差數(shù)列{an}的公差為d,選①S4=20,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選②S3=2a3,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數(shù)列的通項(xiàng)公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項(xiàng)相消法求出Tn=1﹣,不等式無解,即不存在正整數(shù)k,使得Tk>,且bk>【小問1詳解】解:∵點(diǎn)(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設(shè)等差數(shù)列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設(shè)存在正整數(shù)k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數(shù)k,使得Tk>,且bk>19、(1)(2)【解析】(1)根據(jù)題意和橢圓的定義可知a,c,再根據(jù),即可求出b,由此即可求出橢圓的方程;(2)求出直線方程,將其與橢圓方程聯(lián)立,根據(jù)弦長公式求出的長度,再根據(jù)點(diǎn)到直線的距離公式求出點(diǎn)O到直線AB的距離,再根據(jù)面積公式即可求出結(jié)果.【小問1詳解】由題意可得,,∴,,,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】直線l的方程為,代入橢圓方程得,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高一英語 總復(fù)習(xí)資料
- 山東大學(xué)威海校區(qū)614綜合A(含法理學(xué)、憲法學(xué)、行政法學(xué))之法理學(xué)考研沖刺密押題
- 主題:我是中國人
- 師徒結(jié)對總結(jié)范文(7篇)001
- 小學(xué)語文老師業(yè)務(wù)工作總結(jié)集錦3篇
- 網(wǎng)絡(luò)營銷 第3版 教案全套 魏亞萍 6.1 網(wǎng)絡(luò)視頻營銷認(rèn)知-10-1.2網(wǎng)絡(luò)推廣效果評估
- 光伏纜承攬合同
- 2025年石油鉆采機(jī)械項(xiàng)目合作計(jì)劃書
- 荊州出租車租賃合同
- 辦公場地租賃合同場地使用合同范文
- 遼寧省部分高中2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 江西省贛州市南康區(qū)2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 2024年《檔案工作實(shí)務(wù)》考試復(fù)習(xí)題庫400題(含答案)
- 設(shè)計(jì)質(zhì)量工程師(DQE)的角色認(rèn)知及工作職責(zé)
- 《制造業(yè)成本核算》課件
- 2024項(xiàng)目經(jīng)理講安全課
- 烤腸銷售合同范例
- 中國共產(chǎn)主義青年團(tuán)團(tuán)章
- 采購原材料年終總結(jié)
- 2024-2030年中國隧道建設(shè)行業(yè)前景展望及投資規(guī)劃分析報(bào)告
- 2024-2025學(xué)年人教版初中物理九年級全一冊期中復(fù)習(xí)(易錯(cuò)60題)(解析版)
評論
0/150
提交評論