版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省恩施州高中教育聯(lián)盟數(shù)學高二上期末教學質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與平行,則a的值為()A.1 B.﹣2C. D.1或﹣22.已知點、是雙曲線C:的左、右焦點,P是C左支上一點,若直線的斜率為2,且為直角三角形,則雙曲線C的離心率為()A.2 B.C. D.3.若,則下列結(jié)論不正確的是()A. B.C. D.4.函數(shù)的圖象大致是()A. B.C. D.5.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.6.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓7.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.8.已知為等差數(shù)列,且,,則()A. B.C. D.9.在等差數(shù)列{an}中,a1=2,a5=3a3,則a3等于()A.-2 B.0C.3 D.610.已知函數(shù),則函數(shù)在點處的切線方程為()A. B.C. D.11.等比數(shù)列的公比為q,前n項和為,設甲:,乙:是遞增數(shù)列,則()A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件12.命題“,”的否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:的右焦點為,過點向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________14.在空間直角坐標系中,向量為平面ABC的一個法向量,其中,,則向量的坐標為______15.已知空間向量,,,若,,共面,則實數(shù)___________.16.在平面直角坐標系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足:成等差數(shù)列,成等比數(shù)列.(1)求的通項公式:(2)在數(shù)列的每相鄰兩項與間插入個,使它們和原數(shù)列的項構(gòu)成一個新數(shù)列,數(shù)列的前項和記為,求及.18.(12分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內(nèi)角,,的對邊分別為,,,且___________.(1)求角的大小;(2)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.19.(12分)如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F(xiàn)為PA中點,,.四邊形PDCE為矩形,線段PC交DE于點N(1)求證:AC∥平面DEF;(2)求二面角A-BC-P的余弦值20.(12分)已知等差數(shù)列滿足,前7項和為(Ⅰ)求的通項公式(Ⅱ)設數(shù)列滿足,求的前項和.21.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標22.(10分)已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,設,判斷是否為定值?若是,求出該定值;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意可得,解之即可得解.【詳解】解:因為直線與平行,所以,解得.故選:A.2、B【解析】根據(jù)雙曲線的定義和勾股定理利用即可得離心率.【詳解】∵直線的斜率為2,為直角三角形,∴,又,∴,.∵,即,∴故選:B.3、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當且僅當時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎題.4、A【解析】根據(jù)函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當時,,則在上單調(diào)遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.5、A【解析】設出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.6、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.7、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C8、B【解析】由已知條件求出等差數(shù)列的公差,從而可求出【詳解】設等差數(shù)列的公差為,由,,得,解得,所以,故選:B9、A【解析】利用已知條件求得,由此求得.【詳解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故選:A.10、C【解析】依據(jù)導數(shù)幾何意義去求函數(shù)在點處的切線方程即可解決.【詳解】則,又則函數(shù)在點處的切線方程為,即故選:C11、B【解析】當時,通過舉反例說明甲不是乙的充分條件;當是遞增數(shù)列時,必有成立即可說明成立,則甲是乙的必要條件,即可選出答案【詳解】由題,當數(shù)列為時,滿足,但是不是遞增數(shù)列,所以甲不是乙的充分條件若是遞增數(shù)列,則必有成立,若不成立,則會出現(xiàn)一正一負的情況,是矛盾的,則成立,所以甲是乙的必要條件故選:B【點睛】在不成立的情況下,我們可以通過舉反例說明,但是在成立的情況下,我們必須要給予其證明過程12、D【解析】根據(jù)含一個量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得雙曲線的右焦點F(c,0),設一漸近線OM的方程為,則另一漸近線ON的方程為.設,∵,∴,∴,解得∴點M的坐標為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點睛:(1)已知雙曲線的標準方程求雙曲線的漸近線方程時,只要令雙曲線的標準方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進線方程的關鍵是求出的關系,并根據(jù)焦點的位置確定出漸近線的形式,并進一步得到其方程14、【解析】根據(jù)向量為平面ABC的一個法向量,由求解.【詳解】因為,,所以,又因為向量為平面ABC的一個法向量,所以,解得,所以,故答案為:15、1【解析】根據(jù)向量共面,可設,先求解出的值,則的值可求.【詳解】因為,,共面且,不共線,所以可設,所以,所以,所以,所以,故答案為:1.16、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的通項公式進行求解即可;(2)根據(jù)等差數(shù)列的通項公式,結(jié)合等比數(shù)列的前項和公式進行求解即可.【小問1詳解】設等差數(shù)列的公差為,因為成等差數(shù)列,所以有,因成等比數(shù)列,所以,所以;【小問2詳解】由題意可知:在和之間插入個,在和之間插入個,,在和之間插入個,此時共插入的個數(shù)為:,在和之間插入個,此時共插入的個數(shù)為:,因此.18、(1)(2)【解析】(1)若選①,則根據(jù)正弦定理,邊化角,結(jié)合二倍角公式,求得,可得答案;若選②,則根據(jù)余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進而求得,設,,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據(jù)正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設,則,則,即,解得,或(舍去)故.19、(1)證明見解析;(2).【解析】(1)記PC交DE于點N,然后證明FN∥AC,進而通過線面平行的判定定理證明問題;(2)建立空間直角坐標系,進而通過空間向量夾角公式求得答案.【小問1詳解】因為四邊形PDCE為矩形,線段PC交DE于點N,所以N為PC的中點連接FN,在△PAC中,F(xiàn),N分別為PA,PC的中點,所以FN∥AC,因為平面DEF,平面DEF,所以AC∥平面DEF.【小問2詳解】因為PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP兩兩垂直,如圖以D為原點,分別以DA,DC,DP所在直線為x,y,z軸,建立空間直角坐標系則,,,,所以,設平面PBC的法向量為,則,令x=1,則.因為PD垂直于梯形ABCD所在的平面,所以是平面ABC的一個法向量,所以.由圖可知所求二面角為銳角,即所求二面角的余弦值為.20、(1)(2).【解析】(1)根據(jù)等差數(shù)列的求和公式可得,得,然后由已知可得公差,進而求出通項;(2)先明確=,為等差乘等比型通項故只需用錯位相減法即可求得結(jié)論.解析:(Ⅰ)由,得因為所以(Ⅱ)21、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結(jié)合點坐標求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關系求弦長,由三角形面積求點線距離,設M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度環(huán)保材料印刷委托協(xié)議范本3篇
- 2025版牙齒矯正教育培訓機構(gòu)合作合同3篇
- 二零二五年度個人掛靠公司教育培訓合作協(xié)議3篇
- 二零二五版私人學校物業(yè)設施租賃及管理合同3篇
- 機械設備行業(yè)員工需求
- 服裝行業(yè)生產(chǎn)工藝安全
- 藥學科護士協(xié)助藥劑配制
- 二零二五年度個人股權轉(zhuǎn)讓代持協(xié)議書(股權代持與退出機制)16篇
- 二零二五年度行政合同訂立流程與模板指南3篇
- 二零二五年度婚禮視頻拍攝制作合同2篇
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
- 八年級物理下冊功率課件
- DBJ51-T 188-2022 預拌流態(tài)固化土工程應用技術標準
- 《長津湖》電影賞析PPT
- 銷售禮儀培訓PPT
- 滑雪運動介紹
- 最新滋補類中藥的用藥保健主題講座課件
- 大數(shù)據(jù)和人工智能知識考試題庫600題(含答案)
- 2021譯林版高中英語選擇性必修一單詞表
- 機器人控制課件
- 招聘會突發(fā)事件應急預案(通用6篇)
評論
0/150
提交評論