湖南省三湘名校教育聯(lián)盟2025屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第1頁
湖南省三湘名校教育聯(lián)盟2025屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第2頁
湖南省三湘名校教育聯(lián)盟2025屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第3頁
湖南省三湘名校教育聯(lián)盟2025屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第4頁
湖南省三湘名校教育聯(lián)盟2025屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省三湘名校教育聯(lián)盟2025屆高二上數(shù)學(xué)期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正三棱柱中,,點(diǎn)為中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.2.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.3.函數(shù)在上的極大值點(diǎn)為()A. B.C. D.4.已知三個觀測點(diǎn),在的正北方向,相距,在的正東方向,相距.在某次爆炸點(diǎn)定位測試中,兩個觀測點(diǎn)同時聽到爆炸聲,觀測點(diǎn)晚聽到,已知聲速為,則爆炸點(diǎn)與觀測點(diǎn)的距離是()A. B.C. D.5.已知數(shù)列是首項為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實數(shù)的取值范圍是()A., B.C., D.6.直線關(guān)于直線對稱的直線方程為()A. B.C. D.7.已知動點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為,則線段的長度的最小值為()A. B.4C. D.8.設(shè)F是雙曲線的左焦點(diǎn),,P是雙曲線右支上的動點(diǎn),則的最小值為()A.5 B.C. D.99.方程化簡的結(jié)果是()A. B.C. D.10.若向量,,,則()A. B.C. D.11.已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的一點(diǎn),點(diǎn)是線段的中點(diǎn),為坐標(biāo)原點(diǎn),若,則()A.3 B.4C.6 D.1112.若將雙曲線繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,且該函數(shù)在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),向量,,,且,,則___________.14.方程()所表示的直線恒過定點(diǎn)________15.已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且(O為坐標(biāo)原點(diǎn)).若,則橢圓的離心率為________16.設(shè)拋物線的準(zhǔn)線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值18.(12分)已知點(diǎn)F是拋物線和橢圓的公共焦點(diǎn),是與的交點(diǎn),.(1)求橢圓的方程;(2)直線與拋物線相切于點(diǎn),與橢圓交于,,點(diǎn)關(guān)于軸的對稱點(diǎn)為.求的最大值及相應(yīng)的.19.(12分)已知等差數(shù)列的前項和為,滿足,.(1)求數(shù)列的通項公式與前項和;(2)求的值.20.(12分)已知橢圓C:的離心率為,左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)到左焦點(diǎn)最近的距離為.(1)求橢圓C的方程;(2)若經(jīng)過點(diǎn)的直線與橢圓C交于M,N兩點(diǎn),當(dāng)?shù)拿娣e取得最大值時,求直線的方程.21.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍22.(10分)已知數(shù)列的前n項和,滿足,.(1)求證:數(shù)列是等差數(shù)列;(2)令,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)異面直線所成角的定義,取中點(diǎn)為,則為異面直線和所成角或其補(bǔ)角,再解三角形即可求出【詳解】如圖所示:設(shè)中點(diǎn)為,則在三角形中,為中點(diǎn),為中位線,所以有,,所以為異面直線和所成角或其補(bǔ)角,在三角形中,,所以由余弦定理有,故選:A.2、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.3、C【解析】求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點(diǎn)【詳解】,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴函數(shù)在的極大值點(diǎn)為故選:C4、D【解析】根據(jù)題意作出示意圖,然后結(jié)合余弦定理解三角形即可求出結(jié)果.【詳解】設(shè)爆炸點(diǎn)為,由于兩個觀測點(diǎn)同時聽到爆炸聲,則點(diǎn)位于的垂直平分線上,又在的正東方向且觀測點(diǎn)晚聽到,則點(diǎn)位于的左側(cè),,,,設(shè),則,解得,則爆炸點(diǎn)與觀測點(diǎn)的距離為,故選:D.5、D【解析】由等差數(shù)列通項公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:6、C【解析】先聯(lián)立方程得,再求得直線的點(diǎn)關(guān)于直線對稱點(diǎn)的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過點(diǎn),,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點(diǎn)為設(shè)直線的點(diǎn)關(guān)于直線對稱點(diǎn)的坐標(biāo)為,所以,解得所以直線關(guān)于直線對稱的直線過點(diǎn),所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C7、A【解析】求出的最小值,由切線長公式可結(jié)論【詳解】解:由,得最小時,最小,而,所以故選:A.8、B【解析】由雙曲線的的定義可得,于是將問題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點(diǎn)為,且點(diǎn)A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點(diǎn)共線時,取得等號.故選:B9、D【解析】由方程的幾何意義得到是橢圓,進(jìn)而得到焦點(diǎn)和長軸長求解.【詳解】∵方程,表示平面內(nèi)到定點(diǎn)、的距離的和是常數(shù)的點(diǎn)的軌跡,∴它的軌跡是以為焦點(diǎn),長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結(jié)果故選:D10、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A11、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因為,所以,因為點(diǎn)分別是線段,的中點(diǎn),所以是的中位線,所以.故選:A.12、C【解析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數(shù)的正負(fù)即可求解.【詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,則漸近線就需要旋轉(zhuǎn)到與坐標(biāo)軸重合,故漸近線方程的傾斜角為120°,即,該函數(shù)在區(qū)間上存在最小值,可知,所以,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標(biāo)運(yùn)算法則求出,由此能求出【詳解】解:設(shè),,向量,,,且,,,解得,,所以,,,故答案為:14、【解析】將方程化為,令得系數(shù)等于0,即可得到答案.【詳解】方程可化為,由,得,所以方程()所表示的直線恒過定點(diǎn).故答案為:.【點(diǎn)睛】本題考查了直線恒過定點(diǎn)問題,屬于基礎(chǔ)題.15、##【解析】由向量的數(shù)量積得,從而得,利用勾股定理和橢圓的定義可得的等式,從而求得離心率【詳解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案為:16、【解析】由題意結(jié)合拋物線的標(biāo)準(zhǔn)方程確定其準(zhǔn)線方程即可.【詳解】由拋物線方程可得,則,故準(zhǔn)線方程為.故答案為【點(diǎn)睛】本題主要考查由拋物線方程確定其準(zhǔn)線方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為18、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結(jié)果.(2)假設(shè)直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點(diǎn)到的距離,計算,利用函數(shù)性質(zhì)可得結(jié)果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設(shè)直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點(diǎn)到的距離為..令,則,.此時,即【點(diǎn)睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.19、(1),;(2).【解析】(1)設(shè)出等差數(shù)列的公差,借助前項和公式列式計算作答.(2)由(1)的結(jié)論借助裂項相消去求解作答.【小問1詳解】設(shè)等差數(shù)列的公差為,因,,則,解得,于是得,,所以數(shù)列的通項公式為,前項和.【小問2詳解】由(1)知,,所以.20、(1)(2)【解析】(1)根據(jù)題意得,,進(jìn)而解方程即可得答案;(2)根據(jù)題意設(shè)直線的方程,,,進(jìn)而,再聯(lián)立方程,結(jié)合韋達(dá)定理求解即可.【小問1詳解】解:因為橢圓C:的離心率為,所以,因為橢圓上的點(diǎn)到左焦點(diǎn)最近的距離為,所以所以,所以橢圓C的方程為.【小問2詳解】解:根據(jù)題意,設(shè)直線的方程,,設(shè),聯(lián)立方程得,所以,解得或.,所以的面積為令,則,當(dāng)且僅當(dāng),即時,等號成立.所以當(dāng)?shù)拿娣e取得最大值時,直線的方程為.21、或【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論