版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市天府七中學2024屆中考數學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm2.若代數式2x2+3x﹣1的值為1,則代數式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.33.下列圖標中,是中心對稱圖形的是()A. B.C. D.4.﹣18的倒數是()A.18 B.﹣18 C.- D.5.|﹣3|的值是()A.3 B. C.﹣3 D.﹣6.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1257.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.8.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π9.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉90°后得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°10.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.正五邊形B.平行四邊形C.矩形D.等邊三角形二、填空題(本大題共6個小題,每小題3分,共18分)11.的算術平方根是_____.12.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數據5.5億用科學記數法表示為_____.13.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數量記錄如下:收費出口編號通過小客車數量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數量最多的一個出口的編號是___________.14.某市對九年級學生進行“綜合素質”評價,評價結果分為A,B,C,D,E五個等級.現(xiàn)隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據此估算該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為_____人.15.某書店把一本新書按標價的九折出售,仍可獲利20%,若該書的進價為21元,則標價為___________元.16.因式分解:________.三、解答題(共8題,共72分)17.(8分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應再向前跑多少米?18.(8分)如圖所示,在?ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.19.(8分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)20.(8分)如圖1,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數表達式;(2)當點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標為4,點Q在拋物線上,當直線l與y軸的交點C位于y軸負半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標;若不存在,請說明理由.21.(8分)先化簡,然后從中選出一個合適的整數作為的值代入求值.22.(10分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.23.(12分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。24.車輛經過潤揚大橋收費站時,4個收費通道A.B、C、D中,可隨機選擇其中的一個通過.一輛車經過此收費站時,選擇A通道通過的概率是;求兩輛車經過此收費站時,選擇不同通道通過的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.2、D【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數式的求值,運用整體代入的思想是解題的關鍵.3、B【解析】
根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.4、C【解析】
根據乘積為1的兩個數互為倒數,可得一個數的倒數.【詳解】∵-18=1,∴﹣18的倒數是,故選C.【點睛】本題考查了倒數,分子分母交換位置是求一個數的倒數的關鍵.5、A【解析】分析:根據絕對值的定義回答即可.詳解:負數的絕對值等于它的相反數,故選A.點睛:考查絕對值,非負數的絕對值等于它本身,負數的絕對值等于它的相反數.6、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.7、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.8、D【解析】
根據題意可得到CE=2,然后根據S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質及面積的計算.9、C【解析】試題分析:由旋轉的性質可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點:旋轉的性質.10、C【解析】分析:根據中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.詳解:A.正五邊形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.B.平行四邊形,是中心對稱圖形,不是軸對稱圖形,故本選項錯誤.C.矩形,既是中心對稱圖形又是軸對稱圖形,故本選項正確.D.等邊三角形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.點睛:本題考查了對中心對稱圖形和軸對稱圖形的判斷,我們要熟練掌握一些常見圖形屬于哪一類圖形,這樣在實際解題時,可以加快解題速度,也可以提高正確率.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】∵=8,()2=8,∴的算術平方根是.故答案為:.12、5.5×1.【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.13、B【解析】
利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數量分析對比,能求出結果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎知識,考查運用求解能力,考查函數與方程思想,是基礎題.14、16000【解析】
用畢業(yè)生總人數乘以“綜合素質”等級為A的學生所占的比即可求得結果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據.15、28【解析】設標價為x元,那么0.9x-21=21×20%,x=28.16、a(a+1)(a-1)【解析】
先提公因式,再利用公式法進行因式分解即可.【詳解】解:a(a+1)(a-1)故答案為:a(a+1)(a-1)【點睛】本題考查了因式分解,先提公因式再利用平方差公式是解題的關鍵.三、解答題(共8題,共72分)17、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】
(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據題意:(即相當于將拋物線向下平移了2個單位)解得(米).答:他應再向前跑17米.18、(1)見解析;(2)16【解析】試題分析:(1)要證△ABF∽△CEB,需找出兩組對應角相等;已知了平行四邊形的對角相等,再利用AB∥CD,可得一對內錯角相等,則可證.(2)由于△DEF∽△EBC,可根據兩三角形的相似比,求出△EBC的面積,也就求出了四邊形BCDF的面積.同理可根據△DEF∽△AFB,求出△AFB的面積.由此可求出?ABCD的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF∽△CEB(2)解:∵四邊形ABCD是平行四邊形∴AD∥BC,AB平行且等于CD∴△DEF∽△CEB,△DEF∽△ABF∵DE=CD∴,∵S△DEF=2S△CEB=18,S△ABF=8,∴S四邊形BCDF=S△BCE-S△DEF=16∴S四邊形ABCD=S四邊形BCDF+S△ABF=16+8=1.考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】
(1)如圖1中,連接BD,根據三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當x=﹣2時,最大值為;(4)存在,點D的橫坐標為﹣3或或﹣.【解析】
(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數的表達式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標為(﹣5,6),將點A、D的坐標代入一次函數表達式:y=mx+n得:,解得:即直線AD的表達式為:y=﹣x+1,(3)設點E坐標為則點M坐標為則∵故S△ACE有最大值,當x=﹣2時,最大值為;(4)存在,理由:①當AP為平行四邊形的一條邊時,如下圖,設點D的坐標為將點A向左平移2個單位、向上平移4個單位到達點P的位置,同樣把點D左平移2個單位、向上平移4個單位到達點Q的位置,則點Q的坐標為將點Q的坐標代入①式并解得:②當AP為平行四邊形的對角線時,如下圖,設點Q坐標為點D的坐標為(m,n),AP中點的坐標為(0,2),該點也是DQ的中點,則:即:將點D坐標代入①式并解得:故點D的橫坐標為:或或.【點睛】本題考查的是二次函數綜合運用,涉及到圖形平移、平行四邊形的性質等,關鍵是(4)中,用圖形平移的方法求解點的坐標,本題難度大.21、-1【解析】
先化簡,再選出一個合適的整數代入即可,要注意a的取值范圍.【詳解】解:,當時,原式.【點睛】本題考查的是代數式的求值,熟練掌握代數式的化簡是解題的關鍵.22、證明見解析.【解析】
根據平行線性質得出∠A=∠B,根據SAS證△ACD≌△BEC,推出DC=CE,根據等腰三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年月招商引資工作計劃范文
- 初中七年級班主任計劃
- 高一數學函數應用教學計劃模板
- 2025醫(yī)院護士長下半年工作計劃
- 石幢社區(qū)二〇一一年退管工作計劃
- 企業(yè)文化工作計劃
- 2025秋季農村小學德育工作計劃
- 六年級教師教學計劃
- 有關心理健康教育工作計劃范文
- 《行政立法行為》課件
- 維修電工題庫(300道)
- 地球歷史及其生命的奧秘學習通超星期末考試答案章節(jié)答案2024年
- 教你成為歌唱高手智慧樹知到期末考試答案2024年
- 電氣火災綜合治理自查檢查表
- 結算資料目錄
- 新產品導入量產作業(yè)流程(NPI)
- 土壤分析技術規(guī)范(第二版)
- 大學生個人求職簡歷封面 (82)應聘投稿找工作履歷表封面
- T∕CAME 1-2019 家庭式產房建設標準
- 江淮4DC1發(fā)動機檢測報告
- 傷情評估和戰(zhàn)場傷員分類(江)
評論
0/150
提交評論