版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市楊浦區(qū)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預(yù)祝中考成功”,其中“預(yù)”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.2.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠03.下列說法中,正確的是()A.兩個全等三角形,一定是軸對稱的B.兩個軸對稱的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形4.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結(jié)論:①若C,O兩點關(guān)于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④5.在“朗讀者”節(jié)目的影響下,某中學(xué)開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學(xué)生讀書情況,隨機調(diào)查了八年級50名學(xué)生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:冊數(shù)01234人數(shù)41216171關(guān)于這組數(shù)據(jù),下列說法正確的是()A.中位數(shù)是2 B.眾數(shù)是17 C.平均數(shù)是2 D.方差是26.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.7.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.68.如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.69.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.10.如圖所示:有理數(shù)在數(shù)軸上的對應(yīng)點,則下列式子中錯誤的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:(a2)2=_____.12.如圖,等邊三角形ABC內(nèi)接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.13.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.14.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數(shù)圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.15.因式分解______.16.如果關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.三、解答題(共8題,共72分)17.(8分)如圖,已知點在反比例函數(shù)的圖象上,過點作軸,垂足為,直線經(jīng)過點,與軸交于點,且,.求反比例函數(shù)和一次函數(shù)的表達式;直接寫出關(guān)于的不等式的解集.18.(8分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;現(xiàn)甲隊在前兩局比賽中已取得2:0的領(lǐng)先,那么甲隊最終獲勝的概率是多少?19.(8分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)校總結(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.20.(8分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.21.(8分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉(zhuǎn),使得點的對應(yīng)點落在射線上,連接,設(shè)(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關(guān)系,并加以證明;(2)當時,直接寫出線段,,之間的數(shù)量關(guān)系.22.(10分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.23.(12分)據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學(xué)生會想知道學(xué)生對這個提議的了解程度,隨機抽取部分學(xué)生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有___名,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為___;請補全條形統(tǒng)計圖;(2)若該校共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù);(3)“剪刀石頭布”比賽時雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.24.如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的表達式;過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:A、“預(yù)”的對面是“考”,“?!钡膶γ媸恰俺伞?,“中”的對面是“功”,故本選項錯誤;B、“預(yù)”的對面是“功”,“?!钡膶γ媸恰翱肌?,“中”的對面是“成”,故本選項錯誤;C、“預(yù)”的對面是“中”,“?!钡膶γ媸恰翱肌保俺伞钡膶γ媸恰肮Α?,故本選項正確;D、“預(yù)”的對面是“中”,“祝”的對面是“成”,“考”的對面是“功”,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.2、C【解析】
根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點,,解得:且.故選.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關(guān)鍵.3、B【解析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.解:A.兩個全等三角形,一定是軸對稱的錯誤,三角形全等位置上不一定關(guān)于某一直線對稱,故本選項錯誤;B.兩個軸對稱的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形,錯誤;D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形,錯誤.故選B.4、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以
②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關(guān)推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關(guān)于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經(jīng)過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O(shè)為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.5、A【解析】試題解析:察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3;∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是2,∴這組數(shù)據(jù)的中位數(shù)為2,故選A.考點:1.方差;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).6、D【解析】
根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關(guān)鍵.7、B【解析】
先根據(jù)矩形的特點設(shè)出B、C的坐標,根據(jù)矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設(shè)此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設(shè)D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質(zhì)及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.8、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標,結(jié)合反比例函數(shù)圖象上點的坐標特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA9、B【解析】
根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.10、C【解析】
從數(shù)軸上可以看出a、b都是負數(shù),且a<b,由此逐項分析得出結(jié)論即可.【詳解】由數(shù)軸可知:a<b<0,A、兩數(shù)相乘,同號得正,ab>0是正確的;
B、同號相加,取相同的符號,a+b<0是正確的;
C、a<b<0,,故選項是錯誤的;
D、a-b=a+(-b)取a的符號,a-b<0是正確的.
故選:C.【點睛】此題考查有理數(shù)的混合運算,數(shù)軸,解題關(guān)鍵在于結(jié)合數(shù)軸進行解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、a1.【解析】
根據(jù)冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關(guān)鍵.12、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關(guān)鍵是求圓心角的度數(shù).本題考查組合圖形的求法.扇形面積公式等.詳解:連結(jié)OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質(zhì),扇形的面積,三角形的面積等知識點的應(yīng)用,關(guān)鍵是求出∠AOC的度數(shù),主要考查學(xué)生綜合運用定理進行推理和計算的能力.13、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,14、1.【解析】連結(jié)AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.15、a(3a+1)【解析】3a2+a=a(3a+1),故答案為a(3a+1).16、k>-且k≠1【解析】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.三、解答題(共8題,共72分)17、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根據(jù)待定系數(shù)法即可求出反比例函數(shù)和一次函數(shù)的表達式.詳解:(1)∵,點A(5,2),點B(2,3),
∴
又∵點C在y軸負半軸,點D在第二象限,
∴點C的坐標為(2,-1),點D的坐標為(-1,3).
∵點在反比例函數(shù)y=的圖象上,
∴
∴反比例函數(shù)的表達式為
將A(5,2)、B(2,-1)代入y=kx+b,
,解得:∴一次函數(shù)的表達式為.
(1)將代入,整理得:
∵
∴一次函數(shù)圖象與反比例函數(shù)圖象無交點.
觀察圖形,可知:當x<2時,反比例函數(shù)圖象在一次函數(shù)圖象上方,
∴不等式>kx+b的解集為x<2.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.18、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結(jié)果數(shù),再找出甲至少勝一局的結(jié)果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊最終獲勝的概率是;(2)畫樹狀圖為:共有8種等可能的結(jié)果數(shù),其中甲至少勝一局的結(jié)果數(shù)為7,所以甲隊最終獲勝的概率=.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.19、(1)抽樣調(diào)查;12;3;(2)60;(3).【解析】試題分析:(1)根據(jù)只抽取了4個班可知是抽樣調(diào)查,根據(jù)C在扇形圖中的角度求出所占的份數(shù),再根據(jù)C的人數(shù)是5,列式進行計算即可求出作品的件數(shù),然后減去A、C、D的件數(shù)即為B的件數(shù);(2)求出平均每一個班的作品件數(shù),然后乘以班級數(shù)14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據(jù)概率公式列式進行計算即可得解.試題解析:(1)抽樣調(diào)查,所調(diào)查的4個班征集到作品數(shù)為:5÷=12件,B作品的件數(shù)為:12﹣2﹣5﹣2=3件,故答案為抽樣調(diào)查;12;3;把圖2補充完整如下:(2)王老師所調(diào)查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:共有20種機會均等的結(jié)果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點:1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖;4.列表法與樹狀圖法;5.圖表型.20、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【詳解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【點睛】本題考查了解直角三角形的應(yīng)用-俯角、仰角問題,要求學(xué)生能借助其關(guān)系構(gòu)造直角三角形并解直角三角形.21、(1)①;②;(2)【解析】
(1)①先根據(jù)等邊三角形的性質(zhì)的,進而得出,最后用三角形的內(nèi)角和定理即可得出結(jié)論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構(gòu)造出直角三角形即可得出結(jié)論;(2)同②的方法即可得出結(jié)論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉(zhuǎn)所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉(zhuǎn)所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【點睛】此題是幾何變換綜合題,主要考查了等邊三角形的性質(zhì),三角形的內(nèi)角和定理,全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),銳角三角函數(shù),作出輔助線構(gòu)造出全等三角形是解本題的關(guān)鍵.22、(1)詳見解析;(1).【解析】
(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據(jù)勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年旅游規(guī)劃委托合同
- 綠色建筑評價體系開發(fā)合同
- 石油化工行業(yè)綠色生產(chǎn)技術(shù)研發(fā)投資合同
- 電子支付平臺服務(wù)合同
- 藝術(shù)品收藏交易合同與真?zhèn)蚊庳?zé)條款
- 品牌推廣與營銷合作合同
- 蠶繭買賣合同
- 工程建設(shè)施工合同
- 擔保的合合同
- 太陽能光伏系統(tǒng)建設(shè)合同
- 飛鼠養(yǎng)殖技術(shù)指導(dǎo)
- 2024輸血相關(guān)知識培訓(xùn)
- 2023年四川省綿陽市中考初中學(xué)業(yè)水平考試語文試題【含答案】
- 正大天虹方矩管鍍鋅方矩管材質(zhì)書
- 山東省泰安市2022年初中學(xué)業(yè)水平考試生物試題
- 受賄案例心得體會
- 人教A版高中數(shù)學(xué)選擇性必修第一冊第二章直線和圓的方程-經(jīng)典例題及配套練習(xí)題含答案解析
- 圖書館學(xué)基礎(chǔ)簡明教程
- 畢業(yè)設(shè)計(論文)-液體藥品灌裝機的設(shè)計與制造
- 二年級下冊數(shù)學(xué)教案 -《數(shù)一數(shù)(二)》 北師大版
- 銀行內(nèi)部舉報管理規(guī)定
評論
0/150
提交評論