版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省泉州市達標名校數(shù)學高二上期末質量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使2.阿波羅尼斯約公元前年證明過這樣一個命題:平面內到兩定點距離之比為常數(shù)且的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點A,B間的距離為2,動點P與A,B距離之比滿足:,當P、A、B三點不共線時,面積的最大值是()A. B.2C. D.3.經過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.4.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.15.古希臘數(shù)學家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的中心為原點,焦點,均在y軸上,橢圓C的面積為,且短軸長為,則橢圓C的標準方程為()A. B.C. D.6.在平面內,A,B是兩個定點,C是動點,若,則點C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線7.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.8.已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.89.關于實數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列10.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.11.瑞士著名數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結論中正確的有()個A.1 B.2C.3 D.412.設函數(shù),當自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.11二、填空題:本題共4小題,每小題5分,共20分。13.某商場對華為手機近28天的日銷售情況進行統(tǒng)計,得到如下數(shù)據(jù),t36811ym357利用最小二乘法得到日銷售量y(百部)與時間t(天)的線性回歸方程為,則表格中的數(shù)據(jù)___________.14.甲乙兩艘輪船都要在某個泊位停靠8個小時,假定它們在一晝夜的時間段內隨機地到達,則兩船中有一艘在??坎次粫r、另一艘船必須等待的概率為______.15.若直線與平行,則實數(shù)________.16.已知橢圓的弦AB的中點為M,O為坐標原點,則直線AB的斜率與直線OM的斜率之積等于_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)有三個條件:①數(shù)列的任意相鄰兩項均不相等,,且數(shù)列為常數(shù)列,②,③,,中,從中任選一個,補充在下面橫線上,并回答問題已知數(shù)列的前n項和為,______,求數(shù)列的通項公式和前n項和18.(12分).在直角坐標系中,點,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線與曲線相交于A,B兩點(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求值19.(12分)已知函數(shù),(1)討論的單調性;(2)若時,對任意都有恒成立,求實數(shù)的最大值20.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.21.(12分)已知橢圓:的左、右焦點分別為,,點E在橢圓C上,且,,.(1)求橢圓C的方程:(2)直線l過點,交橢圓于點A,B,且點P恰為線段AB的中點,求直線l的方程.22.(10分)(1)已知集合,.:,:,并且是的充分條件,求實數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結論否定,所以“,使”的否定為“,有”,故選:B.2、C【解析】根據(jù)給定條件建立平面直角坐標系,求出點P的軌跡方程,探求點P與直線AB的最大距離即可計算作答.【詳解】依題意,以線段AB的中點為原點,直線AB為x軸建立平面直角坐標系,如圖,則,,設,因,則,化簡整理得:,因此,點P的軌跡是以點為圓心,為半徑的圓,點P不在x軸上時,與點A,B可構成三角形,當點P到直線(軸)的距離最大時,的面積最大,顯然,點P到軸的最大距離為,此時,,所以面積的最大值是故選:C3、C【解析】共漸近線的雙曲線方程,設,把點代入方程解得參數(shù)即可.【詳解】設,把點代入方程解得參數(shù),所以化簡得方程故選:C.4、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設直線的傾斜角為,所以,因為,所以,因為直線的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C5、C【解析】設出橢圓的標準方程,根據(jù)已知條件,求得,即可求得結果.【詳解】因為橢圓的焦點在軸上,故可設其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.6、A【解析】首先建立平面直角坐標系,然后結合數(shù)量積定義求解其軌跡方程即可.【詳解】設,以AB中點為坐標原點建立如圖所示的平面直角坐標系,則:,設,可得:,從而:,結合題意可得:,整理可得:,即點C的軌跡是以AB中點為圓心,為半徑的圓.故選:A.【點睛】本題主要考查平面向量及其數(shù)量積的坐標運算,軌跡方程的求解等知識,意在考查學生的轉化能力和計算求解能力.7、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.8、D【解析】由的周長為,結合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長為故選:D.9、B【解析】根據(jù)給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實數(shù),若,顯然都可以為負數(shù)或者0,此時a,b,c無對數(shù),D不正確.故選:B10、C【解析】根據(jù)不等式性質和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質,作差法判斷大小,意在考查學生對于不等式知識的綜合應用.11、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標,半徑為,圓的的圓心坐標為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A12、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據(jù)已知條件,求出,的平均值,再結合線性回歸方程過樣本中心,即可求解【詳解】解:由表中數(shù)據(jù)可得,,,線性回歸方程為,,解得故答案為:114、【解析】利用幾何概型的面積型概率計算,作出邊長為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設甲乙兩艘輪船到達的時間分為,則,記事件為兩船中有一艘在停靠泊位時、另一艘船必須等待,則,即∴.故答案為:.【點睛】本題考查幾何概型,考查轉化與化歸思想、數(shù)形結合思想,考查邏輯推理能力和運算求解能力,求解時注意對概率模型的抽象成面積型.15、【解析】根據(jù)兩直線平行可得出關于實數(shù)的等式與不等式,即可解得實數(shù)的值.【詳解】因為,則,解得.故答案為:.16、【解析】根據(jù)點是弦的中點,為坐標原點,利用點差法求解.【詳解】設,且,則,(1),(2)得:,,.又,,.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、;【解析】選①,由數(shù)列為常數(shù)列可得,由此可求,根據(jù)任意相鄰兩項均不相等可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選②由取可求,再取與原式相減可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選③由取與原式相減可得,取可求,由此可得,故,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,【詳解】解:選①:因為,數(shù)列為常數(shù)列,所以,解得或,又因為數(shù)列的任意相鄰兩項均不相等,且,所以數(shù)列為2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以為首項,公比為-1的等比數(shù)列,所以,即;所以選②:因為,易知,,所以兩式相減可得,即,以下過程與①相同;選③:由,可得,又,時,,所以,因為,所以也滿足上式,所以,即,以下過程與①相同18、(1)曲線的直角坐標方程為,直線的普通方程為;(2).【解析】(1)根據(jù)極坐標與直角坐標互化公式,結合加法消元法進行求解即可;(2)利用直線參數(shù)方程的意義,結合一元二次方程根與系數(shù)關系進行求解即可.小問1詳解】由;;【小問2詳解】把直線的參數(shù)方程代入曲線的直角坐標方程中,得,,因為在直線上,所以,或而,所以.19、(1)答案見解析;(2).【解析】(1)利用導數(shù)與單調性的關系分類討論即得;(2)由題可得在上恒成立,構造函數(shù),利用導數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域為,且當時,顯然,在定義域上單調遞增;當時,令,得則有:極大值即在上單調遞增,在上單調遞減,綜上所述,當時,在定義域上單調遞增;當時,在上單調遞增,在上單調遞減.【小問2詳解】當時,,對于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調遞增,又,,存在唯一的,使得,即,兩邊取自然對數(shù)得,極小值,則的最大值為20、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構造函數(shù)法,結合導數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,,經檢驗,符合題意,所以;【小問2詳解】由(1)知,,所以在恒成立,即對任意恒成立.令,則.設,易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.21、(1)(2)【解析】(1)根據(jù)橢圓的定義可求出,由結合勾股定理可求出,最后根據(jù)的關系求出,即可求出橢圓方程;(2)分直線的斜率存在或不存在兩種情況討論,當直線斜率存在時,設出直線方程與橢圓聯(lián)立,利用中點的關系求出即可.【小問1詳解】∵點E在橢圓C上,∴,即.在中,,∴橢圓的半焦距.∵,∴橢圓的方程為.【小問2詳解】設,,若直線的斜率不存在,顯然不符合題意.從而可設過點的直線的方程為,將直線的方程代入橢圓的方程,得,則.∵P為線段AB的中點,∴,解得.故直線的方程為,即(經檢驗,所求直線方程符合題意).22、(1);(2)【解析】(1)由二次函數(shù)的性質,求得,又由,求得集合,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年石屎槍項目投資價值分析報告
- 2025至2030年水溶性電鍍層表面封閉劑項目投資價值分析報告
- 兒童玩具租賃合同
- 二零二五年度門面轉租合同(含租金調整機制及通知)
- 二零二五年度返傭金合同協(xié)議書:環(huán)保項目投資傭金分配協(xié)議
- 2025年度試用期員工勞動合同模板:全面權益保障
- 二零二五年度藥店門店轉讓及藥品配送合同協(xié)議書
- 2025年度勞動合同年度續(xù)簽與員工離職補償方案合同
- 二零二五年度特色酒吧主題承包經營合同
- 2025年度瑜伽館會員瑜伽館設施維修保障合同
- 西方史學史課件3教學
- 2024年中國醫(yī)藥研發(fā)藍皮書
- 廣東省佛山市 2023-2024學年五年級(上)期末數(shù)學試卷
- 臺兒莊介紹課件
- 疥瘡病人的護理
- 人工智能算法與實踐-第16章 LSTM神經網(wǎng)絡
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟南市第一中學高三下學期期末統(tǒng)一考試物理試題含解析
- 中學安全辦2024-2025學年工作計劃
- 網(wǎng)絡安全保障服務方案(網(wǎng)絡安全運維、重保服務)
- 現(xiàn)代科學技術概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學院
評論
0/150
提交評論