版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省長泰縣一中2025屆數(shù)學高二上期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在數(shù)列中,,,,則()A.2 B.C. D.12.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.203.在平面上給定相異兩點,設點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.4.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.165.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對6.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點,若C為直線與y軸的交點,且,則k等于()A.4 B.6C. D.7.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.58.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.19.已知且,則下列不等式恒成立的是A. B.C. D.10.記等差數(shù)列的前n項和為,若,,則等于()A.5 B.31C.38 D.4111.若構(gòu)成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,12.已知,則的大小關(guān)系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.空間四邊形中,,,,,,,則與所成角的余弦值等于___________14.圓錐曲線的焦點在軸上,離心率為,則實數(shù)的值是__________.15.已知函數(shù)在處有極值.則=________16.已知圓,以點為中點的弦所在的直線的方程是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,為的中點(1)證明:平面;(2)若點在棱上,且二面角為,求與平面所成角正弦值.18.(12分)已知橢圓:的左、右焦點分別為,,過點的直線l交橢圓于A,兩點,的中點坐標為.(1)求直線l的方程;(2)求的面積.19.(12分)某高中招聘教師,首先要對應聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應聘者的面試成績X的分布列及數(shù)學期望20.(12分)已知函數(shù).(1)當時,求函數(shù)的極大值與極小值;(2)若函數(shù)在上的最大值是最小值的3倍,求a的值.21.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求點到平面的距離.22.(10分)一臺還可以用的機器由于使用的時間較長,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉(zhuǎn)的速率而變化,下表為抽樣試驗結(jié)果:轉(zhuǎn)速(轉(zhuǎn)/秒)1615129每小時生產(chǎn)有缺陷的零件數(shù)(件)10985通過觀察散點圖,發(fā)現(xiàn)與有線性相關(guān)關(guān)系:(1)求關(guān)于的回歸直線方程;(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10個,那么機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?(參考:回歸直線方程為,其中,)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題中條件,逐項計算,即可得出結(jié)果.【詳解】因為,,,所以,因此.故選:A.2、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質(zhì)的應用,橢圓的定義的應用,三角形的周長的求法,屬于基本知識的考查3、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設,,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.4、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C5、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對數(shù)也是正整數(shù)的三位數(shù)有,共3個,所以以此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為,故選:B6、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點的橫坐標,再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當時,與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D7、D【解析】取雙曲線的左焦點,連接,計算可得,即.設,則,,解得:,利用勾股定理計算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設,則,,解得:.,,..故選:D8、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因為兩直線垂直,所以,解得:或.故選:C9、C【解析】∵且,∴∴選C10、A【解析】設等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設等差數(shù)列的公差為d,由題知:,解得.故選:A.11、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對于A,由,所以,,共面;對于B,由,所以,,共面;對于D,,所以,,共面,故選:C.12、B【解析】構(gòu)造利用導數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設恒成立,函數(shù)在上單調(diào)遞減,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計算出的值,利用空間向量的數(shù)量積可得出的值,即可得解.【詳解】,,所以,,所以,.所以,與所成角的余弦值為.故答案為:.14、【解析】根據(jù)圓錐曲線焦點在軸上且離心率小于1,確定a,b求解即可.【詳解】因為圓錐曲線的焦點在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:15、4【解析】根據(jù)極值點概念求解【詳解】,由題意得,,經(jīng)檢驗滿足題意故答案為:416、【解析】設,利用以為中點的弦所在的直線即為經(jīng)過點且垂直于AC的直線求得直線斜率,由點斜式可求得直線方程【詳解】圓的方程可化為,可知圓心為設,則以為中點的弦所在的直線即為經(jīng)過點且垂直于的直線.又知,所以,所以直線的方程為,即故答案為:【點睛】本題考查圓的幾何性質(zhì),考查直線方程求解,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據(jù)等腰三角形性質(zhì)得PO垂直AC,再通過計算,根據(jù)勾股定理得PO垂直O(jiān)B,最后根據(jù)線面垂直判定定理得結(jié)論;(2)根據(jù)條件建立空間直角坐標系,設立各點坐標,根據(jù)方程組解出平面PAM一個法向量,利用向量數(shù)量積求出兩個法向量夾角,根據(jù)二面角與法向量夾角相等或互補關(guān)系列方程,解得M坐標,再利用向量數(shù)量積求得向量PC與平面PAM法向量夾角,最后根據(jù)線面角與向量夾角互余得結(jié)果【詳解】(1)因為,為的中點,所以,且連結(jié)因為,所以為等腰直角三角形,且由知由知平面(2)如圖,以為坐標原點,的方向為軸正方向,建立空間直角坐標系由已知得取平面的法向量設,則設平面的法向量為由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以與平面所成角的正弦值為【點睛】利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當?shù)目臻g直角坐標系;第二,破“求坐標關(guān)”,準確求解相關(guān)點的坐標;第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應用公式關(guān)”18、(1)(2)【解析】(1)設,根據(jù)AB的中點坐標可得,再利用點差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點,聯(lián)立直線和橢圓方程,消,利用韋達定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設,因為的中點坐標為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問2詳解】在直線中,當時,,由橢圓:,得,則直線過點,聯(lián)立,消整理得,則,.19、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨立事件的概率乘法公式分別求出對應的概率,列出分布列即可求出數(shù)學期望【小問1詳解】從這5人中隨機抽取3人,恰有2人簡歷達標的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以20、(1)的極大值為0,的極小值為(2)2【解析】(1)先求導可得,再利用導函數(shù)判斷的單調(diào)性,進而求解;(2)由(1)可得在上的最小值為,由,,可得的最大值為,進而根據(jù)求解即可.【詳解】解:(1)當時,,所以,令,則或,則當和時,;當時,,則在和上單調(diào)遞增,在上單調(diào)遞減,所以極大值為;的極小值為.(2)由題,,由(1)可得在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值即為的極小值;因為,,所以,因為,則,所以.【點睛】本題考查利用導函數(shù)求函數(shù)的極值,考查利用導函數(shù)求函數(shù)的最值,考查運算能力.21、(1)證明見解析;(2).【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)結(jié)合(1),進而利用等體積法求得答案.【小問1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年首期款全付房產(chǎn)買賣合同書3篇
- 二零二五版?zhèn)€人信用重建借款委托擔保合同3篇
- 二零二五版包裝行業(yè)綠色認證與推廣合同3篇
- 二零二五年陵園墓地購置與家族紀念館建設合同3篇
- 二零二五版知識產(chǎn)權(quán)保護技術(shù)服務合同泄密責任細則3篇
- 二零二五年度餐飲企業(yè)食品安全追溯平臺建設合同3篇
- 二零二五年度食品供應與餐飲服務合同2篇
- 二零二五年防火門制造與施工安裝一體化合同模板3篇
- 2025年度影視基地場地租賃及拍攝制作合同范本3篇
- 2025年復合材料堆放場地租賃及環(huán)保處理合同3篇
- 建筑材料供應鏈管理服務合同
- 孩子改名字父母一方委托書
- 2024-2025學年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 礦山隱蔽致災普查治理報告
- 2024年事業(yè)單位財務工作計劃例文(6篇)
- 2024年工程咨詢服務承諾書
- 青桔單車保險合同條例
- 車輛使用不過戶免責協(xié)議書范文范本
- 《獅子王》電影賞析
- 2023-2024學年天津市部分區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論