




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
金華市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足,,則()A. B.C. D.22.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.13.已知直線過點,且其方向向量,則直線的方程為()A. B.C. D.4.點到直線的距離是()A. B.C. D.5.設橢圓:的右頂點為,右焦點為,為橢圓在第二象限內(nèi)的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.6.已知向量,,且與互相垂直,則()A. B.C. D.7.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.8.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條9.當圓的圓心到直線的距離最大時,()A B.C. D.10.焦點為的拋物線標準方程是()A. B.C. D.11.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.12.《九章算術(shù)》是中國古代張蒼、耿壽昌所撰寫的一部數(shù)學專著,全書總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就,其中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何?”其意思為:“今有人分錢,各人所得錢數(shù)依次為等差數(shù)列,其中前人所得之和與后人所得之和相等,問各得多少錢?”,則第人得錢數(shù)為()A.錢 B.錢C.錢 D.錢二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)則的值為.____14.已知,,,若,則______.15.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.16.已知函數(shù)有三個零點,則實數(shù)的取值范圍為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標原點,雙曲線C:(,)的離心率為,點P在雙曲線C上,點,分別為雙曲線C的左右焦點,.(1)求雙曲線C的標準方程;(2)已知點,,設直線PA,PB的斜率分別為,.證明:為定值.18.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長度;若不存在,請說明理由19.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和.20.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大??;(3)在側(cè)棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由21.(12分)設函數(shù).(1)若在點處的切線為,求a,b的值;(2)求的單調(diào)區(qū)間.22.(10分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點M在線段上,且,試問在線段上是否存在一點N,滿足平面,若存在求的值,若不存在,請說明理由?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔2、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因為兩直線垂直,所以,解得:或.故選:C3、D【解析】根據(jù)題意和直線的點方向式方程即可得出結(jié)果.【詳解】因為直線過點,且方向向量為,由直線的點方向式方程,可得直線的方程為:,整理,得.故選:D4、B【解析】直接使用點到直線距離公式代入即可.【詳解】由點到直線距離公式得故選:B5、B【解析】如上圖,設AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質(zhì),主要是離心率的求法,本題的關鍵是利用中位線定理和相似三角形定理6、D【解析】根據(jù)垂直關系可得,由向量坐標運算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.7、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D8、D【解析】求得圓心坐標分別為,半徑分別為,根據(jù)圓圓的位置關系的判定方法,得出兩圓的位置關系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.9、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.10、D【解析】設拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.11、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D12、A【解析】設第所得錢數(shù)為錢,設數(shù)列、、、、的公差為,根據(jù)已知條件可得出關于、的值,即可求得的值.【詳解】設第所得錢數(shù)為錢,則數(shù)列、、、、為等差數(shù)列,設數(shù)列、、、、公差為,則,解得,故.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點:導數(shù)的運算14、【解析】根據(jù)題意,由向量坐標表示,列出方程,求出,,即可得出結(jié)果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標表示求參數(shù),屬于基礎題型.15、##【解析】利用列舉法,結(jié)合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:16、【解析】由題意可得與的圖象有三個不同的交點,經(jīng)判斷時不符合題意,當時,時,兩個函數(shù)圖象有一個交點,可得時與的圖象有兩個交點,等價于與的圖象有兩個不同的交點,對求導,數(shù)形結(jié)合即可求解.【詳解】令可得,若函數(shù)函數(shù)有三個零點,則可得方程有三個根,即與的圖象有三個不同的交點,作出的圖象如圖:當時,是以為頂點開口向下的拋物線,此時與的圖象沒有交點,不符合題意;當時,與的圖象只有一個交點,不符合題意;當時,時,與的圖象有一個交點,所以時與的圖象有兩個交點,即方程有兩個不等的實根,即方程有兩個不等的實根,可得與的圖象有兩個不同的交點,令,則,由即可得,由即可得,所以在單調(diào)遞增,在單調(diào)遞減,作出其圖象如圖:當時,,當時,可得與的圖象有兩個不同的交點,即時,函數(shù)有三個零點,所以實數(shù)的取值范圍為,故答案為:【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據(jù)題意和雙曲線的定義求出,結(jié)合離心率求出b,即可得出雙曲線的標準方程;(2)設,根據(jù)兩點的坐標即可求出、,化簡計算即可.【小問1詳解】由題知:由雙曲線的定義知:,又因為,所以,所以所以,雙曲線C的標準方程為小問2詳解】設,則因為,,所以,所以18、(1)證明見解析(2)存在,的長為或,理由見解析.【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設,求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進而求得的長.小問1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標原點建立如圖所示空間直角坐標系,,,設平面法向量為,則,故可設,由于,所以平面.【小問2詳解】存在,理由如下:設,,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長為或,使與平面所成角的正弦值為.19、(1);(2).【解析】(1)將條件化為基本量并解出,進而求得答案;(2)通過裂項法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當時,.所以時,.20、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,用空間向量求解二面角;(3)設出F點坐標,用空間向量的點到平面距離公式進行求解.【小問1詳解】證明:連接BD,設BD與AC交于點O,連接PO.因為,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因為平面PBD,所以【小問2詳解】因為,所以,所以由(1)知平面ABCD,以O為原點,,,的方向為x軸,y軸,z軸正方向,建立空間直角坐標系,則,,,,,,所以,,,設平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點F到平面AEC的距離為,理由如下:由(2)得,,設,則,所以點F到平面AEC的距離,解得,,所以21、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導,切點在曲線,切點在切線,切點處的導數(shù)值為切線斜率.(2)第一步定義域,第二步求導,第三步令導數(shù)大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當時,在上恒成立,所以在單調(diào)遞減;②當時,令,解得:,列表得:x-0+單調(diào)遞減極小值單調(diào)遞增所以,時,的遞減區(qū)間為,單增區(qū)間為.綜上所述:當時,在單調(diào)遞減;當時,的遞減區(qū)間為,單增區(qū)間為.【點睛】導函數(shù)中得切線問題第一步求導,第二步列切點在曲線,切點在切線,切點處的導數(shù)值為切線斜率這三個方程,可解切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 油脂管理制度
- 營養(yǎng)學(師)考試歷年真題及答案
- 營銷終端激勵方案
- 企業(yè)培訓忠誠課件
- 汽車零部件質(zhì)保及售后服務合同范本
- 車庫租賃及廣告位合作合同范本
- 橋梁電梯布置方案模板
- 綠色生態(tài)區(qū)個人商鋪租賃及環(huán)保要求合同
- 糞污設備安裝方案
- 高速鐵路拆除與路基改造施工服務合同
- 景區(qū)吊橋設施管理制度
- 供水水費收繳管理制度
- 房產(chǎn)中介店經(jīng)營管理制度
- 《2025版防范電信網(wǎng)絡詐騙宣傳手冊》專題講座
- 2025-2030年中國寫字樓行業(yè)市場深度調(diào)研及前景趨勢與投資研究報告
- Q-GDW 10831.1-2025 飛行器展放初級導引繩施工工藝導則第1部分:多旋翼無人機
- 【伊春】2025年黑龍江伊春市紀委監(jiān)委所屬事業(yè)單位公開招聘工作人員57人筆試歷年典型考題及考點剖析附帶答案詳解
- 2025年希望杯IHC真題-二年級(含答案)
- T/CNCA 039-2022車用甲醇汽油(M15)用改性甲醇
- MSDS-不銹鋼304介紹文檔
- 2025年非營利組織運營師考試試題及答案詳解
評論
0/150
提交評論