版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市徐匯區(qū)位育中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標(biāo)系中,直線+的傾斜角是()A. B.C. D.2.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.3.已知空間中四點,,,,則點D到平面ABC的距離為()A. B.C. D.04.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列5.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.6.若方程表示雙曲線,則實數(shù)m的取值范圍是()A. B.C. D.7.若雙曲線(,)的一條漸近線經(jīng)過點,則雙曲線的離心率為()A. B.C. D.28.某班新學(xué)期開學(xué)統(tǒng)計新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.9.已知直線過點,當(dāng)直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.10.江西省重點中學(xué)協(xié)作體于2020年進(jìn)行了一次校際數(shù)學(xué)競賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯誤的是()A.得分在之間的共有40人B.從這100名參賽者中隨機(jī)選取1人,其得分在的概率為0.5C.這100名參賽者得分的中位數(shù)為65D.可求得11.饕餮紋是青銅器上常見的花紋之一,最早見于長江中下游地區(qū)的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個小方格的邊長為一個單位長度,有一點從點出發(fā),每次向右或向下跳一個單位長度,且向右或向下跳是等可能的,那么點經(jīng)過3次跳動后恰好是沿著饕餮紋的路線到達(dá)點的概率為()A. B.C. D.12.經(jīng)過點A(0,-3)且斜率為2的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦點在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點滿足(其中O是坐標(biāo)原點),則的面積是_________14.某足球俱樂部選拔青少年隊員,每人要進(jìn)行3項測試.甲隊員每項測試通過的概率均為,且不同測試之間相互獨立,設(shè)他通過的測試項目數(shù)為X,則_________15.已知為平面的一個法向量,為直線的方向向量.若,則__________.16.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當(dāng)m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.18.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長為.(1)求圓的方程;(2)設(shè)點在圓上運(yùn)動,點,且點滿足,記點的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(異于原點),使得對于上任意一點,都有為一常數(shù),若存在,求出所有滿足條件的點的坐標(biāo),若不存在,說明理由.19.(12分)已知橢圓C:的焦距為,點在C上(1)求C的方程;(2)過點的直線與C交于M,N兩點,點R是直線:上任意一點,設(shè)直線RM,RQ,RN的斜率分別為,,,若,,成等差數(shù)列,求的方程.20.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.21.(12分)已知橢圓的離心率為,短軸長為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,A,B分別為橢圓的左、右頂點,過點A作斜率為的直線交橢圓于另一點E,連接EP并延長交橢圓于另一點F,記直線BF的斜率為.若,求直線EF的方程22.(10分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B2、C【解析】建立坐標(biāo)系,坐標(biāo)表示向量,求出點坐標(biāo),進(jìn)而求出結(jié)果.【詳解】以為坐標(biāo)原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標(biāo)系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C3、C【解析】根據(jù)題意,求得平面的一個法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點,,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點D到平面ABC的距離為.故選:C.4、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運(yùn)算求解能力,考查函數(shù)與方程思想,屬于中檔題.5、A【解析】求出的最小值,由切線長公式可結(jié)論【詳解】解:由,得最小時,最小,而,所以故選:A.6、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標(biāo)準(zhǔn)方程的形式,然后由方程表示雙曲線可得不等關(guān)系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A7、A【解析】先求出漸近線方程,進(jìn)而將點代入直線方程得到a,b關(guān)系,進(jìn)而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.8、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D9、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A10、C【解析】根據(jù)給定的頻率分布直方圖,結(jié)合直方圖的性質(zhì),逐項計算,即可求解.【詳解】由頻率分布直方圖,可得A中,得分在之間共有人,所以A正確;B中,從100名參賽者中隨機(jī)選取1人,其得分在中的概率為,所以B正確;D中,由頻率分布直方圖的性質(zhì),可得,解得,所以D正確.C中,前2個小矩形面積之和為0.4,前3個小矩形面積之和為0.7,所以中位數(shù)在[60,70],這100名參賽者得分的中位數(shù)為,所以C不正確;故選:C.11、B【解析】利用古典概型的概率求解.【詳解】解:點從點出發(fā),每次向右或向下跳一個單位長度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動后,恰好是沿著饕餮紋的路線到達(dá)點B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B12、A【解析】直接代入點斜式方程求解即可詳解】因為直線經(jīng)過點且斜率為2,所以直線的方程為,即,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的焦點在圓上可求出的值,設(shè)線段與軸的交點坐標(biāo)為,進(jìn)而根據(jù)求出的坐標(biāo),代入圓中,求出的值,即可求出結(jié)果.【詳解】因為雙曲線的焦點在圓上,所以,設(shè)線段與軸的交點坐標(biāo)為,結(jié)合雙曲線與圓的對稱性可知為線段的中點,又因為,即,且,則,又因為直線的方程為,所以,又因為在圓上,所以,又因為,則,所以,從而,故,故答案為:.14、【解析】根據(jù)二項分布的方差公式即可求出【詳解】因為,所以故答案為:15、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:16、【解析】先根據(jù)橢圓的方程求得焦點坐標(biāo),然后根據(jù)為正六邊形求得點的坐標(biāo),即點在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標(biāo)為:則點在雙曲線上,可得:又解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【解析】(1)求出直線過定點,得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點,利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓方程,聯(lián)立,求出相交弦的方程,即直線的方程,根據(jù)直線過的定點,得到,從而得到點Q恒在直線上.【小問1詳解】證明:直線過定點,代入得:,故在圓內(nèi),故直線l與圓C相交;【小問2詳解】圓的圓心為,設(shè)點,由垂徑定理得:,即,化簡得:,點M的軌跡方程為:【小問3詳解】設(shè)點,由題意得:Q、A、B、C四點共圓,且圓的方程為:,即,與圓C的方程聯(lián)立,消去二次項得:,即為直線的方程,因為直線過定點,所以,解得:,所以當(dāng)m變化時,點Q恒在直線上.【點睛】本題的第三問是稍有難度的,處理方法是根據(jù)四點共圓,直徑的端點坐標(biāo),求出此圓的方程,與曲線聯(lián)立后得到相交弦的方程,是處理此類問題的關(guān)鍵.18、(1);(2)①,圓;②存在,.【解析】(1)設(shè)圓心,根據(jù)題意,得到半徑,根據(jù)弦長的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進(jìn)而可得出結(jié)果;(2)①設(shè),根據(jù)向量的坐標(biāo)表示,由題中條件,得到,代入圓的方程,即可得出結(jié)果;②假設(shè)存在一點滿足(其中為常數(shù)),設(shè),根據(jù)題意,得到,再由①,得到,兩式聯(lián)立化簡整理,得到,推出,求解得出,即可得出結(jié)果.【詳解】(1)設(shè)圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設(shè),則:,,∵點A在圓上運(yùn)動即:所以點的軌跡方程為,它是一個以為圓心,以為半徑的圓;②假設(shè)存在一點滿足(其中為常數(shù))設(shè),則:整理化簡得:,∵在軌跡上,化簡得:,所以整理得,解得:;存在滿足題目條件.【點睛】本題主要考查求圓的方程,考查圓中的定點問題,涉及圓的弦長公式等,屬于??碱}型.19、(1)(2)【解析】(1)根據(jù)橢圓的焦距為,點在C上,由求解;(2)設(shè),,,的斜率不存在時,則的方程為,與橢圓的方程聯(lián)立求得M,N的坐標(biāo),由,,成等差數(shù)列求解;的斜率存在時,設(shè)的方程為,與橢圓的方程聯(lián)立,然后由,,成等差數(shù)列,結(jié)合韋達(dá)定理求解;【小問1詳解】解:由題意得,解得,,所以C的方程為.【小問2詳解】設(shè),,,當(dāng)?shù)男甭什淮嬖跁r,則的方程為,將代入,得.因為,,成等差數(shù)列,所以,即,顯然當(dāng)時,方程恒成立.當(dāng)?shù)男甭蚀嬖跁r,設(shè)的方程為,聯(lián)立得,則,.,.因為,,成等差數(shù)列,所以,即恒成立.則,解得.綜上所述,的方程為.20、(1)答案見解析(2)證明見解析【解析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時,,當(dāng)時,令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問1詳解】的定義域為當(dāng)時,,在上單調(diào)遞增;當(dāng)時,令,解得;令,解得;綜上所述:當(dāng)時,在上單調(diào)遞增,無減區(qū)間;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當(dāng)時,,,當(dāng)時,令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即21、(1)(2)【解析】(1)由離心率得關(guān)系,短軸求出,結(jié)合關(guān)系式解出,可得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),,過EF的方程為,聯(lián)立直線與橢圓方程得韋達(dá)定理,結(jié)合斜率定義和化簡得,由在橢圓上代換得,聯(lián)立韋達(dá)定理可求,進(jìn)而得解;【小問1詳解】由題意可得,,,又,解得所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)得,,顯然直線EF的斜率存在且不為0,設(shè),,則,都不為和0設(shè)直線EF的方程為,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年違約借款合同違約責(zé)任追究辦法3篇
- 2025年度個人房屋買賣價格調(diào)整及支付合同4篇
- 2025年度企業(yè)應(yīng)收賬款債權(quán)轉(zhuǎn)讓與風(fēng)險控制協(xié)議書3篇
- 2025年度房地產(chǎn)樣板間設(shè)計與施工合同范本4篇
- 2025年度電子商務(wù)個人勞務(wù)派遣合作協(xié)議書4篇
- 工廠租地合同(2篇)
- 二零二五年度民政局離婚協(xié)議書模板法律咨詢附加服務(wù)合同4篇
- 2025年度銷售顧問市場調(diào)研聘用合同2篇
- 2024西部縣域經(jīng)濟(jì)百強(qiáng)研究
- STEM教育實踐講解模板
- 2025年山東浪潮集團(tuán)限公司招聘25人高頻重點提升(共500題)附帶答案詳解
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 2025年江西省港口集團(tuán)招聘筆試參考題庫含答案解析
- (2024年)中國傳統(tǒng)文化介紹課件
- 液化氣安全檢查及整改方案
- 《冠心病》課件(完整版)
- 2024年云網(wǎng)安全應(yīng)知應(yīng)會考試題庫
- 公園保潔服務(wù)投標(biāo)方案
- 光伏電站項目合作開發(fā)合同協(xié)議書三方版
- 高中物理答題卡模板
- 芳香植物與芳香療法講解課件
評論
0/150
提交評論