




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省粵西五校聯(lián)考數(shù)學(xué)高三第一學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為定義在上的奇函數(shù),且滿足當時,,則()A. B. C. D.2.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是()A. B. C. D.4.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.5.根據(jù)如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.6.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實數(shù)等于()A. B.1 C. D.27.已知向量,,則向量與的夾角為()A. B. C. D.8.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.3609.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.10.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.211.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.12.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式在上恒成立,則的最大值為__________.14.設(shè)是等比數(shù)列的前項的和,成等差數(shù)列,則的值為_____.15.若的展開式中只有第六項的二項式系數(shù)最大,則展開式中各項的系數(shù)和是________.16.已知為矩形的對角線的交點,現(xiàn)從這5個點中任選3個點,則這3個點不共線的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)19.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.20.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且是與的等差中項.(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項和為,求滿足的最小正整數(shù)的值.21.(12分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))22.(10分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當時,,所以,.故選:C.【點睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.2、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.3、B【解析】
先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.4、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.5、C【解析】
根據(jù)程序圖,當x<0時結(jié)束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運行,x=1-2=-1<0,程序運行結(jié)束,得,故選C.【點睛】本題考查程序框圖,是基礎(chǔ)題.6、B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對應(yīng)的的值即可.【詳解】因為,所以,又因為是純虛數(shù),所以,所以.故選:B.【點睛】本題考查復(fù)數(shù)的除法運算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.7、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.8、A【解析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.9、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.11、A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復(fù),重復(fù)數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎(chǔ)題12、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設(shè),則.當時,;當時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.14、2【解析】
設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數(shù)列的基本量求解以及運用,屬于中檔題.15、【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數(shù)和.【詳解】由的展開式中只有第六項的二項式系數(shù)最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數(shù)和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數(shù)和的求法,屬于基礎(chǔ)題.16、【解析】
基本事件總數(shù),這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現(xiàn)從,,,,這5個點中任選3個點,基本事件總數(shù),這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質(zhì)可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數(shù)列是首項為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.18、見解析【解析】
選擇①時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計算面積得到答案.【詳解】選擇①時:,,故.根據(jù)正弦定理:,故,故.選擇②時,,,故,為鈍角,故無解.選擇③時,,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結(jié)合正弦定理可得到,利用,,可得到,進而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運用,考查了三角形的面積公式,考查了學(xué)生分析問題、解決問題的能力,屬于基礎(chǔ)題.20、(1)見解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點睛】本題考查了等差中項,考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項相消求和.當已知有與的遞推關(guān)系時,常代入進行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項與前一項的差為常數(shù).21、(1);(2).【解析】
(1)首先對函數(shù)求導(dǎo),根據(jù)函數(shù)存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設(shè)為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實數(shù)a的取值范圍是.【點睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值點和單調(diào)性,利用函數(shù)單調(diào)性證明不等式,屬于難題.22、(1)(2)證明見解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備土建基礎(chǔ)施工合同
- 倉儲物流服務(wù)合同細則
- 徹體工程勞務(wù)分包合同
- 牛羊肉采購合同
- 三人合伙開店合同
- 教材購銷合同
- 文化創(chuàng)意產(chǎn)業(yè)扶持合同
- 新材料研發(fā)及生產(chǎn)許可合同
- 江西師范大學(xué)科學(xué)技術(shù)學(xué)院《系統(tǒng)分析與建?!?023-2024學(xué)年第二學(xué)期期末試卷
- 河南經(jīng)貿(mào)職業(yè)學(xué)院《近現(xiàn)代建筑遺產(chǎn)保護》2023-2024學(xué)年第二學(xué)期期末試卷
- 中華人民共和國學(xué)前教育法-知識培訓(xùn)
- 2023年新高考(新課標)全國2卷數(shù)學(xué)試題真題(含答案解析)
- 事業(yè)單位工作人員獎勵審批表
- 教科版三年級下冊科學(xué)全冊完整課件
- 油漆使用登記記錄表
- 農(nóng)田雜草的調(diào)查
- 【知識點提綱】新教材-人教版高中化學(xué)必修第一冊全冊各章節(jié)知識點考點重點難點提煉匯總
- 上海小弄堂-電子小報
- 軌道交通安全專題培訓(xùn)
- 物理化學(xué)完整版答案
- 節(jié)流孔板孔徑計算
評論
0/150
提交評論