福建省漳州市第八中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第1頁
福建省漳州市第八中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第2頁
福建省漳州市第八中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第3頁
福建省漳州市第八中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第4頁
福建省漳州市第八中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省漳州市第八中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點,依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.2.已知在平面直角坐標(biāo)系中,圓的方程為,直線過點且與直線垂直.若直線與圓交于兩點,則的面積為A.1 B.C.2 D.3.若,則()A.1 B.2C.4 D.84.在等腰中,在線段斜邊上任取一點,則線段的長度大于的長度的概率()A. B.C. D.5.已知向量,,若,則()A.1 B.C. D.26.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.7.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.8.已知直線l和拋物線交于A,B兩點,O為坐標(biāo)原點,且,交AB于點D,點D的坐標(biāo)為,則p的值為()A. B.1C. D.29.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標(biāo)準(zhǔn)差小于乙地該月時的氣溫的標(biāo)準(zhǔn)差;④甲地該月時的氣溫的標(biāo)準(zhǔn)差大于乙地該月時的氣溫的標(biāo)準(zhǔn)差.其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為()A.①③ B.①④C.②③ D.②④10.已知,為正實數(shù),且,則的最小值為()A. B.C. D.111.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為等差數(shù)列的前n項和,若,,則______14.已知定點,動點分別在直線和上運動,則的周長取最小值時點的坐標(biāo)為__________.15.正四棱柱中,,,點為底面四邊形的中心,點在側(cè)面四邊形的邊界及其內(nèi)部運動,若,則線段長度的最大值為__________16.拋物線的準(zhǔn)線方程是,則實數(shù)___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓經(jīng)過點和,且圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)直線過點,且與圓相切,求直線的方程;(3)設(shè)直線與圓相交于兩點,點為圓上的一動點,求的面積的最大值18.(12分)已知橢圓的左、右兩個焦點,,離心率,短軸長為21求橢圓的方程;2如圖,點A為橢圓上一動點非長軸端點,的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求面積的最大值19.(12分)已知數(shù)列的前項和為,且.?dāng)?shù)列是等比數(shù)列,,(1)求,的通項公式;(2)求數(shù)列的前項和20.(12分)已知命題:“曲線表示焦點在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍.21.(12分)如圖所示,第九屆亞洲機器人錦標(biāo)賽VEX中國選拔賽永州賽區(qū)中,主辦方設(shè)計了一個矩形坐標(biāo)場地ABCD(包含邊界和內(nèi)部,A為坐標(biāo)原點),AD長為10米,在AB邊上距離A點4米的F處放置一只電子狗,在距離A點2米的E處放置一個機器人,機器人行走速度為v,電子狗行走速度為,若電子狗和機器人在場地內(nèi)沿直線方向同時到達(dá)場地內(nèi)某點M,那么電子狗將被機器人捕獲,點M叫成功點.(1)求在這個矩形場地內(nèi)成功點M的軌跡方程;(2)P為矩形場地AD邊上的一動點,若存在兩個成功點到直線FP的距離為,且直線FP與點M的軌跡沒有公共點,求P點橫坐標(biāo)的取值范圍.22.(10分)已知圓,P(2,0),M點是圓Q上任意一點,線段PM的垂直平分線交半徑MQ于點C,當(dāng)M點在圓上運動時,點C的軌跡為曲線C(1)求曲線C方程;(2)已知直線l:x=8,A、B是曲線C上的兩點,且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個正方體的棱長為,其體積為,上面第二個正方體的棱長為,其體積為,上面第三個正方體的棱長為,其體積為,所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,其前項和為,當(dāng),,所以所有這些正方體的體積之和將趨近于.故選:D.2、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長,又∵坐標(biāo)原點到的距離為,∴的面積為.考點:1、直線與圓的位置關(guān)系;2、三角形的面積公式.3、D【解析】由題意結(jié)合導(dǎo)數(shù)的運算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.4、C【解析】利用幾何概型的長度比值,即可計算.【詳解】設(shè)直角邊長,斜邊,則線段的長度大于的長度的概率.故選:C5、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B6、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.7、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B8、B【解析】由垂直關(guān)系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達(dá)定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設(shè),則解得故選:B9、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標(biāo)準(zhǔn)差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標(biāo)準(zhǔn)差為由莖葉圖知乙地該月時的平均氣溫為,標(biāo)準(zhǔn)差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標(biāo)準(zhǔn)差小于甲的標(biāo)準(zhǔn)差,故④正確,故正確的是①④,故選:B10、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時等號成立,故的最小值為1,故選:D.11、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.12、C【解析】利用基本不等式判斷命題的真假,由不等式性質(zhì)判斷命題的真假,進(jìn)而確定它們所構(gòu)成的復(fù)合命題的真假即可.【詳解】由,當(dāng)且僅當(dāng)時等號成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】利用等差數(shù)列前n項和的性質(zhì)進(jìn)行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:14、【解析】作點分別關(guān)于直線和的對稱點,根據(jù)對稱性即可求出三角形周長的最小值,利用三點共線求出的坐標(biāo).【詳解】如圖所示:定點關(guān)于函數(shù)對稱點,關(guān)于軸的對稱點,當(dāng)與直線和的交點分別為時,此時的周長取最小值,且最小值為此時點的坐標(biāo)滿足,解得,即點.故答案為:.15、【解析】根據(jù)正四棱柱的性質(zhì)、矩形的性質(zhì),線面垂直的判定定理,結(jié)合勾股定理進(jìn)行求解即可.【詳解】當(dāng)位于點時,因為是正方形,所以,由正四棱柱的性質(zhì)可知,平面,因為平面,所以,因為平面,所以平面,平面,所以,因此當(dāng)位于點時,滿足題意,當(dāng)點位于邊點時,若,在矩形中,,因為,所以,因此,所以有,此時,又平面,所以平面,故點的軌跡在線段上,,所以線段長度的最大值為.故答案為:關(guān)鍵點睛:利用特殊點判斷出點的軌跡是解題的關(guān)鍵.16、##【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,根據(jù)其準(zhǔn)線方程即可求得實數(shù).【詳解】拋物線化為標(biāo)準(zhǔn)方程:,其準(zhǔn)線方程是,而所以,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或(3)【解析】(1)解法一,根據(jù)題意設(shè)圓的標(biāo)準(zhǔn)方程為,進(jìn)而待定系數(shù)法求解即可;解法二:由題知圓心在線段的垂直平分線上,進(jìn)而結(jié)合題意得圓的圓心與半徑,寫出方程;(2)分直線的斜率存在與不存在兩種情況討論求解即可;(3)由幾何法求弦長得,進(jìn)而到直線距離的最大值為,再計算面積即可.【小問1詳解】解:解法一:設(shè)圓的標(biāo)準(zhǔn)方程為,由已知得,解得,所以圓的標(biāo)準(zhǔn)方程為;解法二:由圓經(jīng)過點和,可知圓心在線段的垂直平分線上,將代入,得,即,半徑,所以圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:當(dāng)直線的斜率存在時,設(shè),即,由直線與圓相切,得,解得,此時,當(dāng)直線的斜率不存在時,直線顯然與圓相切所以直線的方程為或;【小問3詳解】解:圓心到直線的距離,所以,則點到直線距離的最大值為,所以的面積的最大值18、(1)橢圓的標(biāo)準(zhǔn)方程為(2)面積的最大值為【解析】(1)由題意得,再由,標(biāo)準(zhǔn)方程為;(2)①當(dāng)?shù)男甭什淮嬖跁r,不妨??;②當(dāng)?shù)男甭蚀嬖跁r,設(shè)的方程為,聯(lián)立方程組,又直線的距離點到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時,不妨取,故;②當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組,化簡得,設(shè)點到直線的距離因為是線段的中點,所以點到直線的距離為,∴綜上,面積的最大值為.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、點到直線的距離、弦長公式和三角形面積公式等知識,涉及函數(shù)與方程思想、數(shù)形結(jié)合思想分類與整合、轉(zhuǎn)化與化歸等思想,并考查運算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標(biāo)準(zhǔn)方程為;(2)利用分類與整合思想分當(dāng)?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時,由舍而不求法求得,再求得點到直線的距離為面積的最大值為.19、(1),(2)【解析】(1)利用求出通項公式,根據(jù)已知求出公比即可得出的通項公式;(2)利用錯位相減法可求解.【小問1詳解】因為數(shù)列的前項和為,且,當(dāng)時,,當(dāng)時,,滿足,所以,設(shè)等比數(shù)列的公比為,因為,,所以,解得,所以;【小問2詳解】因為,,則,兩式相減得,所以.20、(1);(2).【解析】(1)根據(jù)方程為焦點在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時,的取值范圍是,為真命題時,,所以的取值范圍是因為是的必要不充分條件,所以,所以,等號不同時取得,所以【點睛】本小題主要考查橢圓、雙曲線,考查必要不充分條件求參數(shù).21、(1)(2)【解析】(1)分別以為軸,建立平面直角坐標(biāo)系,由題意,利用兩點間的距離公式可得答案.(2)由題意可得點的軌跡所在圓的圓心到直線的距離,點的軌跡與軸的交點到直線的距離,從而可得答案.【小問1詳解】分別以為軸,建立平面直角坐標(biāo)系,則,設(shè)成功點,可得即,化簡得因為點需在矩形場地內(nèi),所以故所求軌跡方程為【小問2詳解】設(shè),直線方程為直線FP與點M軌跡沒有公共點,則圓心到直線的距離大于依題意,動點需滿足兩個條件:點的軌跡所在圓的圓心到直線的距離即,解得②點的軌跡與軸的交點到直線的距離即,解得綜上所述,P點橫坐標(biāo)的取值范圍是22、(1)(2)【解析】(1)由定義法求出曲線C的方程;(2)先判斷出直線AB過定點H(2,0)或H(4,0).當(dāng)AB過定點H(4,0),求出最大;當(dāng)H(2,0)時,可設(shè)直線AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問1詳解】因為線段PM的垂直平分線交半徑MQ于點C,所以,所以,符合橢圓的定義,所以點C的軌跡為以P、Q為焦點的橢圓,其中,所以,所以曲線C的方程為.【小問2詳解】不妨設(shè)直線l:x=8交x軸于G(8,0),直線AB交x軸于H(h,0),則,.因為,,,所以.又因為的面積是△ABD面積的5倍,所以.因為G(8,0),D(3,0),所以,所以H(2,0)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論