云南省屏邊縣第一中學(xué)2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁
云南省屏邊縣第一中學(xué)2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁
云南省屏邊縣第一中學(xué)2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁
云南省屏邊縣第一中學(xué)2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁
云南省屏邊縣第一中學(xué)2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省屏邊縣第一中學(xué)2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的一個(gè)法向量為()A. B.C. D.2.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.93.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.4.若等差數(shù)列,其前n項(xiàng)和為,,,則()A.10 B.12C.14 D.165.記為等差數(shù)列的前項(xiàng)和.若,,則的公差為()A.1 B.2C.4 D.86.已知圓C的圓心在直線上,且與直線相切于點(diǎn),則圓C方程為()A. B.C. D.7.在平行六面體中,點(diǎn)P在上,若,則()A. B.C. D.8.已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為3,則點(diǎn)到另一焦點(diǎn)的距離為()A.1 B.3C.5 D.79.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.10.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒有次品 D.至少一件次品11.已知數(shù)列中,,(),則等于()A. B.C. D.212.已知是拋物線上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若,則()A.1011 B.2020C.2021 D.2022二、填空題:本題共4小題,每小題5分,共20分。13.已知,是橢圓:的兩個(gè)焦點(diǎn),點(diǎn)在上,則的最大值為________14.已知數(shù)列前項(xiàng)和為,且,則_______.15.一個(gè)六棱錐的體積為,其底面是邊長(zhǎng)為的正六邊形,側(cè)棱長(zhǎng)都相等,則該六棱錐的側(cè)面積為.16.甲口袋中裝有2個(gè)黑球和1個(gè)白球,乙口袋中裝有3個(gè)白球.現(xiàn)同時(shí)從甲、乙兩口袋中各任取一個(gè)球交換放入對(duì)方口袋,共進(jìn)行了2次這樣的操作后,甲口袋中恰有2個(gè)黑球的概率為__________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為.(1)求的方程;(2)為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)B,C為E上兩個(gè)不同的點(diǎn),其中B點(diǎn)在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.18.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項(xiàng)和;(2)若以數(shù)列中的相鄰兩項(xiàng),構(gòu)造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同19.(12分)為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和(Ⅰ)求k的值及f(x)的表達(dá)式(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值20.(12分)已知拋物線過點(diǎn),O為坐標(biāo)原點(diǎn)(1)求焦點(diǎn)的坐標(biāo)及其準(zhǔn)線方程;(2)拋物線C在點(diǎn)A處的切線記為l,過點(diǎn)A作與切線l垂直的直線,與拋物線C的另一個(gè)交點(diǎn)記為B,求的面積21.(12分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說明理由22.(10分)如圖,正方體的棱長(zhǎng)為,分別是的中點(diǎn),點(diǎn)在棱上,().(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時(shí),最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】直線化為,求出直線的方向向量,因?yàn)榉ㄏ蛄颗c方向向量垂直,逐項(xiàng)驗(yàn)證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因?yàn)榉ㄏ蛄颗c方向向量垂直,設(shè)法向量為,所以,由于,A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤;故選:B.2、B【解析】首先地推公式變形,得,,求得數(shù)列的通項(xiàng)公式后,再解不等式.【詳解】因?yàn)?,兩邊取倒?shù),得,整理為:,,所以數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,,,因?yàn)椋?,得,解得:?所以的最大值是7.故選:B3、D【解析】根據(jù)給定的方程求出離心率,的表達(dá)式,再計(jì)算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D4、B【解析】由等差數(shù)列前項(xiàng)和的性質(zhì)計(jì)算即可.【詳解】由等差數(shù)列前項(xiàng)和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.5、C【解析】根據(jù)等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式利用條件,列出關(guān)于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.6、C【解析】設(shè)出圓心坐標(biāo),根據(jù)垂直直線的斜率關(guān)系求得圓心坐標(biāo),結(jié)合兩點(diǎn)距離公式得半徑,即可得圓方程【詳解】設(shè)圓心為,則圓心與點(diǎn)的連線與直線l垂直,即,則點(diǎn),所以圓心為,半徑,所以方程為,故選:C7、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進(jìn)行求解即可.【詳解】因?yàn)?,,所以有,因此,故選:C8、D【解析】由橢圓的定義可以直接求得點(diǎn)到另一焦點(diǎn)的距離.【詳解】設(shè)橢圓的左、右焦點(diǎn)分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.9、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因?yàn)樵陔p曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B10、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒有次品“故選:C11、D【解析】由已知條件可得,,…,即是周期為3的數(shù)列,即可求.【詳解】由題設(shè),知:,,,…,∴是周期為3的數(shù)列,而的余數(shù)為1,∴.故選:D.12、C【解析】結(jié)合向量坐標(biāo)運(yùn)算以及拋物線的定義求得正確答案.【詳解】設(shè),因?yàn)槭菕佄锞€上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】根據(jù)橢圓的定義可得,結(jié)合基本不等式即可求得的最大值.【詳解】∵在橢圓上∴∴根據(jù)基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為:9.14、,.【解析】由的遞推關(guān)系,討論、求及,注意驗(yàn)證是否滿足通項(xiàng),即可寫出的通項(xiàng)公式.【詳解】當(dāng)時(shí),,當(dāng)且時(shí),,而,即也滿足,∴,.故答案為:,.15、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個(gè)六棱錐的體積為,其底面是邊長(zhǎng)為2的正六邊形,側(cè)棱長(zhǎng)都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點(diǎn):棱柱、棱錐、棱臺(tái)的體積16、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意,結(jié)合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設(shè),根據(jù)拋物線的對(duì)稱性,可表示出B,C的坐標(biāo),從而利用向量的坐標(biāo)運(yùn)算,求得所設(shè)參數(shù)值,進(jìn)而求得答案.【小問1詳解】的準(zhǔn)線為:,作于R,根據(jù)拋物線的定義有,所以,因?yàn)樵诘膬?nèi)側(cè),所以當(dāng)P,Q,R三點(diǎn)共線時(shí),取得最小值,此時(shí),解得,所以的方程為.小問2詳解】因?yàn)锳B,OC互相垂直平分,所以四邊形AOBC是菱形.由,得軸,設(shè)點(diǎn),則,由拋物線的對(duì)稱性知,,,.由,得,解得,所以在菱形中,,邊上的高,所以菱形的面積.18、(1);(2)證明過程見解析.【解析】(1)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)、等比數(shù)列和等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可;(2)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合雙曲線漸近線方程和離心率公式進(jìn)行證明即可.【小問1詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,所以,因此,所以,所以;【小?詳解】由(1)知,在雙曲線中,,所以得,因此雙曲線的漸近線方程為:,雙曲線的離心率為:,所以雙曲線系中所有雙曲線的漸近線、離心率都相同.19、,因此.,當(dāng)隔熱層修建厚時(shí),總費(fèi)用達(dá)到最小值70萬元【解析】解:(Ⅰ)設(shè)隔熱層厚度為,由題設(shè),每年能源消耗費(fèi)用為.再由,得,因此.而建造費(fèi)用為最后得隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和為(Ⅱ),令,即.解得,(舍去)當(dāng)時(shí),,當(dāng)時(shí),,故是的最小值點(diǎn),對(duì)應(yīng)的最小值為當(dāng)隔熱層修建厚時(shí),總費(fèi)用達(dá)到最小值為70萬元20、(1)焦點(diǎn),準(zhǔn)線方程;(2)12.【解析】(1)將點(diǎn)A坐標(biāo)代入求出,寫出拋物線方程即可作答.(2)由(1)的結(jié)論求出切線l的斜率,進(jìn)而求得直線AB方程,聯(lián)立直線AB與拋物線C的方程,求出弦AB長(zhǎng)及點(diǎn)O到直線AB距離計(jì)算作答.【小問1詳解】依題意,,解得,則拋物線的方程為:,所以拋物線的焦點(diǎn),準(zhǔn)線方程為.【小問2詳解】顯然切線l的斜率存在,設(shè)切線l的方程為:,由消去x并整理得:,依題意得,解得,因直線,則直線AB的斜率為-1,方程為:,即,由消去x并整理得:,解得,因此有,而,則,而點(diǎn)到直線AB:的距離,則,所以的面積是12.21、(1);(2)是定值,理由見解析.【解析】(1)由題意有,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形有,即可寫出橢圓方程;(2)直線與橢圓交于兩點(diǎn),聯(lián)立方程結(jié)合韋達(dá)定理即有,已知應(yīng)用點(diǎn)線距離公式、三角形面積公式即可說明的面積是否為定值;【詳解】(1)橢圓離心率為,即,∵點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,∴,綜上有:,,故橢圓方程為,(2)由直線與橢圓交于兩點(diǎn),聯(lián)立方程:,整理得,設(shè),則,,,,原點(diǎn)到的距離,為定值;【點(diǎn)睛】本題考查了由離心率求橢圓方程,根據(jù)直線與橢圓的相交關(guān)系證明交點(diǎn)與原點(diǎn)構(gòu)成的三角形面積是否為定值的問題.22、(Ⅰ),.(Ⅱ)見解析.【解析】(Ⅰ)由題可知,,由和,結(jié)合基本不等式可求最值;(Ⅱ)連接交于點(diǎn),則為的中點(diǎn),可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論