北京海淀外國(guó)語(yǔ)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
北京海淀外國(guó)語(yǔ)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
北京海淀外國(guó)語(yǔ)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
北京海淀外國(guó)語(yǔ)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
北京海淀外國(guó)語(yǔ)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京海淀外國(guó)語(yǔ)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.2.已知A,B,C是橢圓M:上三點(diǎn),且A(A在第一象限,B關(guān)于原點(diǎn)對(duì)稱(chēng),,過(guò)A作x軸的垂線交橢圓M于點(diǎn)D,交BC于點(diǎn)E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.3.如圖,在棱長(zhǎng)為2的正方體中,點(diǎn)P在截面上(含邊界),則線段的最小值等于()A. B.C. D.4.如圖,在三棱錐S—ABC中,點(diǎn)E,F(xiàn)分別是SA,BC的中點(diǎn),點(diǎn)G在棱EF上,且滿足,若,,,則()A. B.C. D.5.已知函數(shù),則的單調(diào)遞增區(qū)間為().A. B.C. D.6.下列說(shuō)法正確的有()個(gè).①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項(xiàng).A.1 B.2C.3 D.07.已知橢圓的長(zhǎng)軸長(zhǎng)為10,焦距為8,則該橢圓的短軸長(zhǎng)等于()A.3 B.6C.8 D.128.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=19.直線x-y+1=0被橢圓+y2=1所截得的弦長(zhǎng)|AB|等于()A. B.C. D.10.已知實(shí)數(shù),滿足,則的最小值是()A. B.C. D.11.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2C.1 D.012.在圓內(nèi),過(guò)點(diǎn)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則曲線在點(diǎn)處的切線的傾斜角是_______14.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___15.在的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)_____.(結(jié)果用數(shù)值表示)16.已知拋物線的焦點(diǎn)為,點(diǎn)在上,且,則______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)【2018年新課標(biāo)I卷文】已知函數(shù)(1)設(shè)是的極值點(diǎn).求,并求的單調(diào)區(qū)間;(2)證明:當(dāng)時(shí),18.(12分)已知點(diǎn)F為拋物線:()的焦點(diǎn),點(diǎn)在拋物線上且在x軸上方,.(1)求拋物線的方程;(2)已知直線與曲線交于A,B兩點(diǎn)(點(diǎn)A,B與點(diǎn)P不重合),直線PA與x軸、y軸分別交于C、D兩點(diǎn),直線PB與x軸、y軸分別交于M、N兩點(diǎn),當(dāng)四邊形CDMN的面積最小時(shí),求直線l的方程.19.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并對(duì)其求解.問(wèn)題:已知為數(shù)列的前項(xiàng)和,,且___________.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.20.(12分)已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)的橫坐標(biāo)為1,且.(1)求拋物線的方程;(2)過(guò)焦點(diǎn)作兩條相互垂直的直線(斜率均存在),分別與拋物線交于、和、四點(diǎn),求四邊形面積的最小值.21.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值22.(10分)2021年國(guó)慶期間,某電器商場(chǎng)為了促銷(xiāo),給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費(fèi)滿8千元,可減8百元.方案二:消費(fèi)金額超過(guò)8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個(gè)紅色小球、2個(gè)黃色小球的一號(hào)箱子,裝有2個(gè)紅色小球、2個(gè)黃色小球的二號(hào)箱子,裝有1個(gè)紅色小球、3個(gè)黃色小球的三號(hào)箱子各抽一個(gè)小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個(gè)紅色小球則打6折;若抽出2個(gè)紅色小球則打7折;若抽出1個(gè)紅色小球則打8折;若沒(méi)有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費(fèi)8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場(chǎng)消費(fèi)了1萬(wàn)元,請(qǐng)用所學(xué)知識(shí)幫助你朋友分析一下應(yīng)選擇哪種付款方案.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)直線的傾斜角為,則,解方程即可.【詳解】由已知,設(shè)直線的傾斜角為,則,又,所以.故選:C2、C【解析】設(shè)出點(diǎn),,的坐標(biāo),將點(diǎn),分別代入橢圓方程兩式作差,構(gòu)造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點(diǎn)在軸上,且為的中點(diǎn),則.【詳解】設(shè),,,則,,,兩式相減并化簡(jiǎn)得,即,則,則AB錯(cuò)誤;∵,,∴,又∵,∴,即,解得,則點(diǎn)在軸上,且為的中點(diǎn)即,則正確.故選:C.3、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長(zhǎng)為2,則,,設(shè)到平面的距離為,由得,解得故選:B4、D【解析】利用空間向量的加、減運(yùn)算即可求解.詳解】由題意可得故選:D5、D【解析】利用導(dǎo)數(shù)分析函數(shù)單調(diào)性【詳解】的定義域?yàn)?,,令,解得故的單調(diào)遞增區(qū)間為故選:D6、A【解析】由向量數(shù)量積為實(shí)數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【詳解】對(duì)于①,與共線,與共線,故不一定成立,故①正確;對(duì)于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯(cuò)誤;對(duì)于③,若,取,則數(shù)不是數(shù)的等比中項(xiàng),故③錯(cuò)誤故選:A7、B【解析】根據(jù)橢圓中的關(guān)系即可求解.【詳解】橢圓的長(zhǎng)軸長(zhǎng)為10,焦距為8,所以,,可得,,所以,可得,所以該橢圓的短軸長(zhǎng),故選:B.8、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.9、A【解析】聯(lián)立方程組,求出交點(diǎn)坐標(biāo),利用兩點(diǎn)間的距離公式求距離.【詳解】由得交點(diǎn)為(0,1),,則|AB|==.故選:A.10、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A11、B【解析】集合中的元素為點(diǎn)集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點(diǎn)組成的集合,集合B表示直線上所有的點(diǎn)組成的集合,又圓與直線相交于兩點(diǎn),,則中有2個(gè)元素.故選B.【名師點(diǎn)睛】求集合的基本運(yùn)算時(shí),要認(rèn)清集合元素的屬性(是點(diǎn)集、數(shù)集或其他情形)和化簡(jiǎn)集合,這是正確求解集合運(yùn)算的兩個(gè)先決條件.集合中元素的三個(gè)特性中的互異性對(duì)解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗(yàn)集合中的元素是否滿足互異性.12、D【解析】由題,求得圓的圓心和半徑,易知最長(zhǎng)弦,最短弦為過(guò)點(diǎn)與垂直的弦,再求得BD的長(zhǎng),可得面積.【詳解】圓化簡(jiǎn)為可得圓心為易知過(guò)點(diǎn)的最長(zhǎng)弦為直徑,即而最短弦為過(guò)與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)的定義,化簡(jiǎn)整理,可得,根據(jù)導(dǎo)數(shù)的幾何意義,即可求得答案.【詳解】因?yàn)?,所以,則曲線在點(diǎn)處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:14、【解析】由在區(qū)間上恒成立來(lái)求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:15、【解析】先求解出該二項(xiàng)式展開(kāi)式的通項(xiàng),然后求解出滿足題意的項(xiàng)數(shù)值,帶入通項(xiàng)即可求解出展開(kāi)式的系數(shù).【詳解】展開(kāi)式通項(xiàng)為,由題意,令,解得,,所以項(xiàng)的系數(shù)為.故答案為:.16、【解析】由拋物線的焦半徑公式可求得的值.【詳解】拋物線的準(zhǔn)線方程為,由拋物線的焦半徑公式可得,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)a=;f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增.(2)證明見(jiàn)解析.【解析】分析:(1)先確定函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點(diǎn)的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時(shí),f(x)≥,之后構(gòu)造新函數(shù)g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結(jié)果.詳解:(1)f(x)的定義域?yàn)椋琭′(x)=aex–由題設(shè)知,f′(2)=0,所以a=從而f(x)=,f′(x)=當(dāng)0<x<2時(shí),f′(x)<0;當(dāng)x>2時(shí),f′(x)>0所以f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增(2)當(dāng)a≥時(shí),f(x)≥設(shè)g(x)=,則當(dāng)0<x<1時(shí),g′(x)<0;當(dāng)x>1時(shí),g′(x)>0.所以x=1是g(x)的最小值點(diǎn)故當(dāng)x>0時(shí),g(x)≥g(1)=0因此,當(dāng)時(shí),點(diǎn)睛:該題考查的是有關(guān)導(dǎo)數(shù)的應(yīng)用問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值、導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系以及證明不等式問(wèn)題,在解題的過(guò)程中,首先要保證函數(shù)的生存權(quán),先確定函數(shù)的定義域,之后根據(jù)導(dǎo)數(shù)與極值的關(guān)系求得參數(shù)值,之后利用極值的特點(diǎn),確定出函數(shù)的單調(diào)區(qū)間,第二問(wèn)在求解的時(shí)候構(gòu)造新函數(shù),應(yīng)用不等式的傳遞性證得結(jié)果.18、(1);(2)或.【解析】(1)根據(jù)給定條件結(jié)合拋物線定義求出p即可作答.(2)聯(lián)立直線l與拋物線的方程,用點(diǎn)A,B坐標(biāo)表示出點(diǎn)C,D,M,N的坐標(biāo),列出四邊形CDMN面積的函數(shù)關(guān)系,借助均值不等式計(jì)算得解.【小問(wèn)1詳解】拋物線的準(zhǔn)線:,由拋物線定義得,解得,所以拋物線的方程為.【小問(wèn)2詳解】因?yàn)辄c(diǎn)在上,且,則,即,依題意,,設(shè),,由消去并整理得,則有,,直線PA的斜率是,方程為,令,則,令,則,即點(diǎn)C,點(diǎn)D,同理點(diǎn)M,點(diǎn)N,則,,四邊形的面積有:,當(dāng)且僅當(dāng),即時(shí)取“=”,所以當(dāng)時(shí)四邊形CDMN的面積最小值為4,直線l的方程為或.19、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項(xiàng)的性質(zhì)計(jì)算求解;若選②:利用等比數(shù)列等比中項(xiàng)的性質(zhì)計(jì)算求解,若選③:利用直接計(jì)算;(2)根據(jù)對(duì)數(shù)的運(yùn)算,可知數(shù)列為等差數(shù)列,直接求和即可.小問(wèn)1詳解】由,當(dāng)時(shí),,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項(xiàng)公式為;若選②:由,所以,所以數(shù)列的通項(xiàng)公式為;若選③:由,即,所以數(shù)列的通項(xiàng)公式為;【小問(wèn)2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.20、(1)(2)2【解析】(1)根據(jù)拋物線的定義求出,即可得到拋物線方程;(2)設(shè)直線的方程為:,、,則直線的方程為:,聯(lián)立直線與拋物線方程,消元、列出韋達(dá)定理,再根據(jù)弦長(zhǎng)公式表示出,同理可得,則四邊形的面積,最后利用基本不等式計(jì)算可得;【小問(wèn)1詳解】解:由已知知:,解得,故拋物線的方程為:.【小問(wèn)2詳解】解:由(1)知:,設(shè)直線方程為:,、,則直線的方程為:,聯(lián)立得,則,所以,,∴,同理可得,∴四邊形的面積,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,∴四邊形面積的最小值為2.21、(1)證明見(jiàn)解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過(guò)點(diǎn)垂直于平面的直線為軸建立空間直角坐標(biāo)系.求出平面的一個(gè)法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問(wèn)1詳解】因?yàn)樗倪呅问堑妊菪?,,所以,所以,即因?yàn)槠矫?,所以,又因?yàn)?,所以平面,因?yàn)槠矫?,所以平面平面【小?wèn)2詳解】以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過(guò)點(diǎn)垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系設(shè),則,所以,,,由(1)可知平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)椋?,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.22、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個(gè)紅球,求出沒(méi)有抽出紅色小球的概率,再根據(jù)對(duì)立事件的概率公式即可得出答案;(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論