版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆貴州省銅仁市銅仁偉才學(xué)校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.2.已知,,,則,,的大小關(guān)系為()A. B. C. D.3.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題4.已知函數(shù)的圖像上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.6.已知復(fù)數(shù)滿足,則()A. B. C. D.7.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實(shí)數(shù),則實(shí)數(shù)a等于()A. B. C.- D.-8.已知函數(shù),為的零點(diǎn),為圖象的對(duì)稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.9.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)10.已知雙曲線:,,為其左、右焦點(diǎn),直線過右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.11.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.12.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知等邊三角形的邊長(zhǎng)為1.,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為__________.14.函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_____.15.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則__________.16.正四面體的一個(gè)頂點(diǎn)是圓柱上底面的圓心,另外三個(gè)頂點(diǎn)圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實(shí)數(shù)的取值范圍.18.(12分)已知,且.(1)請(qǐng)給出的一組值,使得成立;(2)證明不等式恒成立.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.20.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.21.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.22.(10分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.2、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對(duì)數(shù)式比較大小,屬于中檔題.3、B【解析】
由的單調(diào)性,可判斷p是真命題;分類討論打開絕對(duì)值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對(duì)于命題q,當(dāng),即時(shí),;當(dāng),即時(shí),,由,得,無解,因此命題q是假命題.所以為假命題,A錯(cuò)誤;為真命題,B正確;為假命題,C錯(cuò)誤;為真命題,D錯(cuò)誤.故選:B【點(diǎn)睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、A【解析】
可將問題轉(zhuǎn)化,求直線關(guān)于直線的對(duì)稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對(duì)稱直線為,當(dāng)時(shí),,,當(dāng)時(shí),,則當(dāng)時(shí),,單減,當(dāng)時(shí),,單增;當(dāng)時(shí),,,當(dāng),,當(dāng)時(shí),單減,當(dāng)時(shí),單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時(shí),得,解得;當(dāng)與()相切時(shí),滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題5、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.6、A【解析】
根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.7、A【解析】分析:計(jì)算,由z1,是實(shí)數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實(shí)數(shù),所以,即.故選A.點(diǎn)睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.8、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對(duì)稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對(duì)稱軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對(duì)稱性,屬于中檔題.9、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.10、D【解析】
由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.11、C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.12、D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.14、【解析】
對(duì)函數(shù)零點(diǎn)問題等價(jià)轉(zhuǎn)化,分離參數(shù)討論交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),,等價(jià)于函數(shù)恰有兩個(gè)公共點(diǎn),作出大致圖象:要有兩個(gè)交點(diǎn),即,所以.故答案為:【點(diǎn)睛】此題考查函數(shù)零點(diǎn)問題,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對(duì)函數(shù)零點(diǎn)問題恰當(dāng)變形,等價(jià)轉(zhuǎn)化,數(shù)形結(jié)合求解.15、【解析】
根據(jù)的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因?yàn)榈恼归_式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點(diǎn)睛】本題主要考查二項(xiàng)式的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、【解析】
設(shè)正四面體的棱長(zhǎng)為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設(shè)正四面體的棱長(zhǎng)為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點(diǎn)睛】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導(dǎo)數(shù)求x<0時(shí),f(x)的極大值為,即證(2)等價(jià)于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.【詳解】(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,∴f(x)的極大值為,∴當(dāng)x<0時(shí),f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,且x→0+時(shí),h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當(dāng)x∈(0,x0)時(shí),g′(x)<0,g(x)單調(diào)遞減,當(dāng)x∈(x0,+∞)時(shí),g′(x)>0,g(x)單調(diào)遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實(shí)數(shù)k的取值范圍是(﹣∞,0].【點(diǎn)睛】本題主要考查利用證明不等式,考查利用導(dǎo)數(shù)求最值和解答不等式的恒成立問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時(shí)加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因?yàn)?所以.所以,即.因?yàn)?所以,因?yàn)?所以,所以.【點(diǎn)睛】考查不等式的證明,考查不等式的性質(zhì)的應(yīng)用.19、(1)見解析;(2)見解析【解析】
(1)求得的導(dǎo)函數(shù),對(duì)分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達(dá)定理求得的關(guān)系式,利用差比較法,計(jì)算,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進(jìn)而證得不等式成立.【詳解】(1).當(dāng)時(shí),,此時(shí)在上單調(diào)遞減;當(dāng)時(shí),由解得或,∵是增函數(shù),∴此時(shí)在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)(2)證明見解析【解析】
(1),①當(dāng)時(shí),,②兩式相減即得數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求和證明.【詳解】(1)解:,①當(dāng)時(shí),.當(dāng)時(shí),,②由①-②,得,因?yàn)榉仙鲜剑裕?)證明:因?yàn)?,所以.【點(diǎn)睛】本題主要考查數(shù)列通項(xiàng)的求法,考查數(shù)列求和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.21、(1);(2)見解析【解析】
將函數(shù)解析式化簡(jiǎn)即可求出函數(shù)的最小正周期根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出函數(shù)在定義域上的最大值和最小值【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物聯(lián)網(wǎng)智能硬件研發(fā)許可合同
- 2024年獨(dú)家代理房產(chǎn)出售合同
- 二零二五年國際展覽舞臺(tái)施工合同2篇
- 2024年機(jī)場(chǎng)跑道建設(shè)合同
- 2025版酒店會(huì)議酒店合同包含會(huì)議場(chǎng)地布置及燈光音響租賃3篇
- 2025版智能變電站電力施工分包合同范本
- 2024年生物質(zhì)能發(fā)電項(xiàng)目特許經(jīng)營合同
- 課題申報(bào)書:帶量化的動(dòng)態(tài)認(rèn)知邏輯研究
- 課題申報(bào)書:促進(jìn)小跟班逐步成長(zhǎng)為接班人的雜務(wù)課程研究
- 2025年度股權(quán)激勵(lì)合同模板(股權(quán)激勵(lì)與員工晉升)3篇
- 2023高中學(xué)業(yè)水平合格性考試歷史重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)(復(fù)習(xí)必背)
- 低壓用電客戶電能計(jì)量裝置典型設(shè)計(jì)
- 桑樹栽培技術(shù)課件
- 精編-人教版八年級(jí)上冊(cè)物理-第四章光現(xiàn)象全單元課件設(shè)計(jì)(5課時(shí))
- 管道和設(shè)備保溫工程檢驗(yàn)批質(zhì)量驗(yàn)收記錄
- 電纜槽橋架安裝檢查記錄
- 中班美術(shù)教案:美麗的社區(qū)教案及教學(xué)反思
- 2022年江蘇小高考生物試題(含答案)
- 游戲王統(tǒng)一規(guī)則
- 五年級(jí)上冊(cè)數(shù)學(xué)課件-9.3 多邊形的面積(復(fù)習(xí))丨蘇教版 (共15張PPT)
- 員工培訓(xùn)記錄蟲害人員
評(píng)論
0/150
提交評(píng)論