山東省泰安市東平高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
山東省泰安市東平高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
山東省泰安市東平高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
山東省泰安市東平高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
山東省泰安市東平高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省泰安市東平高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,四面體-,是底面△的重心,,則()A B.C. D.2.已知等比數(shù)列滿足,,則()A. B.C. D.3.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A. B.C D.4.下列結(jié)論正確的個數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.15.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.6.已知空間向量,,,下列命題中正確的個數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個基底.A.0 B.1C.2 D.37.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.158.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.9.定義在區(qū)間上的函數(shù)滿足:對恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.10.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列結(jié)論正確的是().A.函數(shù)在上是增函數(shù)B.C.D.是函數(shù)的極小值點11.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.312.將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,若,,使得,則實數(shù)a的取值范圍是______14.已知正項等比數(shù)列的前n項和為,且,則的最小值為_________15.射擊隊某選手命中環(huán)數(shù)的概率如下表所示:命中環(huán)數(shù)10987概率0.320.280.180.120.1該選手射擊兩次,兩次命中環(huán)數(shù)相互獨立,則他至少命中一次9環(huán)或10環(huán)的概率為_________________.(結(jié)果用小數(shù)表示)16.直線l:y=-x+m與曲線有兩個公共點,則實數(shù)m的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.18.(12分)已知點,圓.(1)若直線l過點M,且被圓C截得的弦長為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點,點N在圓C上運動,線段的中點為P,求點P的軌跡方程.19.(12分)已知雙曲線中心在原點,離心率為2,一個焦點(1)求雙曲線方程;(2)設(shè)Q是雙曲線上一點,且過點F、Q的直線l與y軸交于點M,若,求直線l的方程20.(12分)已知橢圓過點,離心率為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的上頂點作直線l交拋物線于A,B兩點,O為坐標(biāo)原點①求證:;②設(shè)OA,OB分別與橢圓相交于C,D兩點,過點O作直線CD的垂線OH,垂足為H,證明:為定值21.(12分)已知梯形如圖甲所示,其中,,,四邊形是邊長為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點在線段上,且與平面所成角的正弦值為,求線段的長度.22.(10分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設(shè)為拋物線的焦點,直線與拋物線交于,兩點,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量的加減運算推出,進而得出結(jié)果.【詳解】因為,所以,故選:B2、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設(shè)等比數(shù)列的公比為,因為等比數(shù)列滿足,,所以,所以,故選:D.3、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A4、D【解析】根據(jù)常數(shù)函數(shù)的導(dǎo)數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導(dǎo)公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的求導(dǎo)公式,可判斷③④.【詳解】由得:,故①錯誤;對于,,故,故②正確;對于,則,故③錯誤;對于,則,故④錯誤,故選:D5、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C6、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.7、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C8、D【解析】先求定義域,再求導(dǎo)數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.9、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點睛】函數(shù)的性質(zhì)是高考的重點內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問題,通過題目中給定的不等式,分別構(gòu)造兩個不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時,必須堅持定義域優(yōu)先的原則.對于函數(shù)實際應(yīng)用問題,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響10、B【解析】根據(jù)導(dǎo)函數(shù)的圖像,可求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值點的定義逐一判斷各個選項即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象,可得或時,,當(dāng)或時,,所以函數(shù)在和上遞減,在和上遞增,故A錯誤;,故B正確;,故C錯誤;是函數(shù)的極大值點,故D錯誤.故選:B.11、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因為拋物線的焦點的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.12、A【解析】先化簡函數(shù)表達式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個單位長度后,得到的圖象.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時,,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時,,所以在上單調(diào)遞增,所以,即,因為,,使得,所以,解得,故答案為:14、16【解析】根據(jù)是等比數(shù)列,由,即可得也是等比數(shù)列,結(jié)合基本不等式的性質(zhì)即可求出的最小值.【詳解】是等比數(shù)列,,即,也是等比數(shù)列,且,,可得:,當(dāng)且僅當(dāng)時取等號,的最小值為16.故答案為:1615、84【解析】先求出該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率,由對立事件的概率可得答案.【詳解】該選手射擊一次,命中的環(huán)數(shù)低于9環(huán)的概率為該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率為所以他至少命中一次9環(huán)或10環(huán)的概率為故答案:0.8416、【解析】曲線表示圓的右半圓,結(jié)合的幾何意義,得出實數(shù)m的取值范圍.【詳解】曲線表示圓的右半圓,當(dāng)直線與相切時,,即,由表示直線的截距,因為直線l與曲線有兩個公共點,由圖可知,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當(dāng)直線l的斜率存在時,設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時,當(dāng)直線l的斜率不存在時,由對稱性不妨令,,,當(dāng)時,,即當(dāng)時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1)或(2)【解析】(1)由直線被圓C截得的弦長為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結(jié)合點到直線的距離公式,列出方程,即可求解.(2)設(shè)點,,根據(jù)線段的中點為,求得,結(jié)合在圓上,代入即可求解.【小問1詳解】解:由題意,圓,可得圓心,半徑,因為直線被圓C截得的弦長為,則圓心到直線的距離為,當(dāng)直線的斜率不存在時,此時直線的方程為,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.【小問2詳解】解:設(shè)點,因為點,線段的中點為,可得,解得,又因為在圓上,可得,即,即點的軌跡方程為.19、(1)(2)或【解析】(1)依題意設(shè)所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設(shè),即可得到的坐標(biāo),依題意可得或,分兩種情況分別求出的坐標(biāo),再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設(shè)所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點,∴l(xiāng)的斜率一定存在,則設(shè).令得,∵且M、Q、F共線于l,∴或當(dāng)時,,,∴,∵Q在雙曲線上,∴,∴,當(dāng)時,,代入雙曲線可得:,∴綜上所求直線l的方程為:或20、(1)(2)①證明見解析;②證明見解析【解析】(1)根據(jù)離心率及過點求出求解即可;(2)①設(shè)直線l的方程為,利用向量的數(shù)量積計算證明即可;②設(shè)直線CD方程為,利用求出,再由點O到直線CD的距離即可求證.【小問1詳解】因為,所以,又因為,解得,,所以橢圓的方程為;【小問2詳解】①證明:設(shè),,依題意,直線l斜率存在,設(shè)直線l的方程為,聯(lián)立方程,消去y得,所以,又因為,所以,因此,②證明:設(shè),,設(shè)直線CD方程為,因為,所以,則,聯(lián)立,得當(dāng)時,,則所以,即滿足則,即為定值21、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論