版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年江蘇省南通市高級中學(xué)第二學(xué)期高三摸底考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.2.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度4.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.5.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.6.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或7.已知集合,,則等于()A. B. C. D.8.地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風(fēng)力發(fā)電,近10年來,全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量連年攀升,中國更是發(fā)展迅猛,2014年累計(jì)裝機(jī)容量就突破了,達(dá)到,中國的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量與中國新增裝機(jī)容量圖.根據(jù)所給信息,正確的統(tǒng)計(jì)結(jié)論是()A.截止到2015年中國累計(jì)裝機(jī)容量達(dá)到峰值B.10年來全球新增裝機(jī)容量連年攀升C.10年來中國新增裝機(jī)容量平均超過D.截止到2015年中國累計(jì)裝機(jī)容量在全球累計(jì)裝機(jī)容量中占比超過9.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.10.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.11.設(shè)全集,集合,,則()A. B. C. D.12.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,,若,且,則面積的最大值為________.14.已知拋物線的焦點(diǎn)為,過點(diǎn)且斜率為1的直線交拋物線于兩點(diǎn),,若線段的垂直平分線與軸交點(diǎn)的橫坐標(biāo)為,則的值為_________.15.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.16.連續(xù)擲兩次骰子,分別得到的點(diǎn)數(shù)作為點(diǎn)的坐標(biāo),則點(diǎn)落在圓內(nèi)的概率為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點(diǎn)分別為,,點(diǎn),求的值.18.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:19.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.20.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.21.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.22.(10分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因?yàn)?,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)?,所以,又,,則|,即,所以.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.2.A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.3.C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計(jì)算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.4.B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.5.B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.6.D【解析】
根據(jù)逆運(yùn)算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項(xiàng).【詳解】因?yàn)?所以當(dāng),解得
,所以3是輸入的x的值;當(dāng)時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.7.A【解析】
進(jìn)行交集的運(yùn)算即可.【詳解】,1,2,,,,1,.故選:.【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.8.D【解析】
先列表分析近10年全球風(fēng)力發(fā)電新增裝機(jī)容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計(jì)裝機(jī)容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機(jī)容量39.140.645.135.851.863.854.953.551.4中國累計(jì)裝機(jī)裝機(jī)容量逐年遞增,A錯誤;全球新增裝機(jī)容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計(jì)算,10年來中國新增裝機(jī)容量平均每年為,選項(xiàng)C錯誤;截止到2015年中國累計(jì)裝機(jī)容量,全球累計(jì)裝機(jī)容量,占比為,選項(xiàng)D正確.故選:D【點(diǎn)睛】本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.9.C【解析】
根據(jù)題目中的基底定義求解.【詳解】因?yàn)?,,,,,,所以能作為集合的基底,故選:C【點(diǎn)睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.10.D【解析】
依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時,在上不單調(diào),故A不正確;當(dāng)時,在上單調(diào)遞減,故B不正確;當(dāng)時,在上不單調(diào),故C不正確;當(dāng)時,在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.11.D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時等號成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.14.1【解析】
設(shè),寫出直線方程代入拋物線方程后應(yīng)用韋達(dá)定理求得,由拋物線定義得焦點(diǎn)弦長,求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,直線的方程為,據(jù)得.設(shè),則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點(diǎn)睛】本題考查拋物線的焦點(diǎn)弦問題,根據(jù)拋物線的定義表示出焦點(diǎn)弦長是解題關(guān)鍵.15.【解析】
先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.16.【解析】
連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.18.(1)(2)見解析【解析】
(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當(dāng)且僅當(dāng)即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當(dāng)且僅當(dāng)時等號成立,即,所以.法2:由得,,當(dāng)且僅當(dāng)時“=”成立.【點(diǎn)睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.19.(1)(2)證明見解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)?,,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時,,單調(diào)遞增,當(dāng),時,,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時,,,單調(diào)遞增,當(dāng),時,,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.20.(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長,進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.21.(1);(2)證明見解析【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此解不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年私人房產(chǎn)買賣合同環(huán)保要求與執(zhí)行標(biāo)準(zhǔn)3篇
- 2025年度路演展示廳清潔維護(hù)服務(wù)租賃合同4篇
- 二零二五版水利工程開工合同范例2篇
- 2025年度多功能培訓(xùn)學(xué)校教室租賃合同范本3篇
- 2025年度廚師行業(yè)人才引進(jìn)與培養(yǎng)服務(wù)協(xié)議3篇
- 2025年度文化藝術(shù)品樣品展覽與上樣合作協(xié)議3篇
- 2024綜藝節(jié)目拍攝基地租賃合同
- 2025年物業(yè)保潔外包服務(wù)合同(含節(jié)能環(huán)保服務(wù))3篇
- 2025年度智能電網(wǎng)建設(shè)采購戰(zhàn)略合作協(xié)議合同范本3篇
- 2025年消防給排水系統(tǒng)節(jié)能改造與優(yōu)化合同3篇
- 人教版小學(xué)數(shù)學(xué)(2024)一年級下冊第一單元 認(rèn)識平面圖形綜合素養(yǎng)測評 B卷(含答案)
- 企業(yè)年會攝影服務(wù)合同
- 電商運(yùn)營管理制度
- 二零二五年度一手房購房協(xié)議書(共有產(chǎn)權(quán)房購房協(xié)議)3篇
- 2025年上半年上半年重慶三峽融資擔(dān)保集團(tuán)股份限公司招聘6人易考易錯模擬試題(共500題)試卷后附參考答案
- 城市公共交通運(yùn)營協(xié)議
- 內(nèi)燃副司機(jī)晉升司機(jī)理論知識考試題及答案
- 2024北京東城初二(上)期末語文試卷及答案
- 2024設(shè)計(jì)院與職工勞動合同書樣本
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 電工高級工練習(xí)題庫(附參考答案)
評論
0/150
提交評論