版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市望城區(qū)第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知i是虛數(shù)單位,復(fù)數(shù)z=,則復(fù)數(shù)z的虛部為()A.i B.-iC.1 D.-12.已知拋物線的準線方程為,則此拋物線的標準方程為()A. B.C. D.3.已知,則點到平面的距離為()A. B.C. D.4.直線的一個法向量為()A. B.C. D.5.已知直線平分圓C:,則最小值為()A.3 B.C. D.6.如圖,四面體-,是底面△的重心,,則()A B.C. D.7.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.8.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.9.在等差數(shù)列中,,則()A.6 B.3C.2 D.110.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓11.已知點,點關(guān)于原點的對稱點為,則()A. B.C. D.12.方程表示的曲線經(jīng)過的一點是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若動直線分別與函數(shù)和的圖像交于A,B兩點,則的最小值為______14.若、是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于,兩點.若為等邊三角形,則雙曲線的離心率為________.15.定義在上的函數(shù)滿足,且對任意都有,則不等式的解集為__________.16.若圓平分圓的周長,則直線被圓所截得的弦長為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,().(1)證明:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列滿足:(),求數(shù)列的前項和.18.(12分)已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線在y軸上的截距為m,交橢圓于A,B兩個不同點.(Ⅰ)求橢圓的方程;(Ⅱ)求m的取值范圍;(Ⅲ)求證直線MA,MB與x軸始終圍成一個等腰三角形.19.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀20.(12分)在平面直角坐標系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.21.(12分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結(jié)構(gòu)如圖所示,上部分是側(cè)棱長為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.22.(10分)已知點A(-2,0),B(2,0),動點M滿足直線AM與BM的斜率之積為,記M的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線;(2)若直線和曲線C相交于E,F(xiàn)兩點,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先通過復(fù)數(shù)的除法運算求出z,進而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.2、D【解析】由已知設(shè)拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因為拋物線的準線方程為,所以設(shè)拋物線方程為,則,得,所以拋物線方程為,故選:D,3、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點到平面的距離為,所以點到平面的距離為.故選:A4、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設(shè)法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.5、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.6、B【解析】根據(jù)空間向量的加減運算推出,進而得出結(jié)果.【詳解】因為,所以,故選:B7、D【解析】根據(jù)點到直線的距離與點到點之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D8、A【解析】由條件建立a,b,c的關(guān)系,由此可求離心率的值.【詳解】設(shè),則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.9、B【解析】根據(jù)等差數(shù)列下標性質(zhì)進行求解即可.【詳解】因為是等差數(shù)列,所以,故選:B10、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:11、C【解析】根據(jù)空間兩點間距離公式,結(jié)合對稱性進行求解即可.【詳解】因為點關(guān)于原點的對稱點為,所以,因此,故選:C12、C【解析】當時可得,可得答案.【詳解】當時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)求出與平行的曲線的切線,再利用兩點間距離公式進行求解即可.【詳解】設(shè)曲線的切點為,由,所以曲線的切線的斜率為,直線的斜率為,當切線與平行時,即,即切點為,當直線過切點時,有最小值,即,此時,解方程組:,,故答案為:【點睛】關(guān)鍵點睛:利用曲線的切線性質(zhì)進行求解是解題的關(guān)鍵.14、【解析】根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結(jié)合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點,,B為雙曲線上一點,則,即,∴由,則,已知,在△F1AF2中應(yīng)用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點睛】方法點睛:求雙曲線的離心率,常常不能經(jīng)過條件直接得到a,c的值,這時可將或視為一個整體,把關(guān)系式轉(zhuǎn)化為關(guān)于或的方程,從而得到離心率的值.15、【解析】利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得不等式的解集.【詳解】構(gòu)造函數(shù),,所以在上遞減,由,得,即,所以,即等式的解集為.故答案為:16、6【解析】根據(jù)兩圓的公共弦過圓的圓心即可獲解【詳解】兩圓相減得公共弦所在的直線方程為由題知兩圓的公共弦過圓的圓心,所以即,又,所以到直線的距離所以直線被圓所截得的弦長為故答案為:6三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)將給定等式變形,計算即可判斷數(shù)列類型,再求出其通項而得解;(2)利用(1)的結(jié)論求出數(shù)列的通項,然后利用錯位相減法求解即得.【詳解】(1)因數(shù)列滿足,,則,而,于是數(shù)列是首項為1,公比為2的等比數(shù)列,,即,所以數(shù)列是等比數(shù)列,,;(2)由(1)知,則于是得,,所以數(shù)列的前項和.18、(Ⅰ);(Ⅱ)且;(Ⅲ)證明見解析.【解析】(Ⅰ)設(shè)出橢圓方程,根據(jù)題意得出關(guān)于的方程組,從而求得橢圓的方程;(Ⅱ)根據(jù)題意設(shè)出直線方程,并與橢圓方程聯(lián)立消元,根據(jù)直線與橢圓方程有兩個不同交點,利用即可求出m取值范圍;(Ⅲ)設(shè)直線MA,MB的斜率分別為k1,k2,根據(jù)題意把所證問題轉(zhuǎn)化為證明k1+k2=0即可.【詳解】(1)設(shè)橢圓方程為,由題意可得,解得,∴橢圓方程為;(Ⅱ)∵直線l平行于OM,且在y軸上的截距為m,,所以設(shè)直線的方程為,由消元,得∵直線l與橢圓交于A,B兩個不同點,所以,解得,所以m的取值范圍為.(Ⅲ)設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可,設(shè),由(Ⅱ)可知,則,由,而,,故直線MA,MB與x軸始終圍成一個等腰三角形.19、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形20、(1)(2)【解析】(1)首先求的中點,再利用垂直關(guān)系求直線的斜率,即可求解;(2)首先求點的坐標,再求直線的斜率,求得直線的斜率,利用點斜式直線方程,即可求解.【小問1詳解】由和得:中點四邊形為菱形,,且中點,對角線所在直線方程為:,即:.【小問2詳解】由,解得:,,,,直線的方程為:,即:.21、(1),其中.(2).【解析】(1)利用柱體和椎體體積公式求得的函數(shù)表達式.(2)利用導(dǎo)數(shù)求得體積的最大值.【小問1詳解】正六邊形的邊長(0),底面積,于是,其中.【小問2詳解】,,當時,單調(diào)遞增,當時,單調(diào)遞減,所以當時,.綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京電子科技學(xué)院《商務(wù)英語函電與合同》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年高層建筑玻璃幕墻施工合同
- 2025年度安置房物業(yè)管理服務(wù)規(guī)范及收費標準合同3篇
- 課題申報書:大眾旅游視域下現(xiàn)代文學(xué)新經(jīng)驗的生成研究(1912-1937)
- 2025版餐廚垃圾處理設(shè)施運營維護與廢棄物清運服務(wù)承包合同2篇
- 課題申報書:大學(xué)生心理健康教育家校醫(yī)社協(xié)同機制研究
- 課題申報書:大數(shù)據(jù)驅(qū)動的基層老年人群原發(fā)性高血壓合并癥管理模式研究
- 2025版離婚協(xié)議書范本與婚姻解除后子女撫養(yǎng)合同3篇
- 2025版企業(yè)通勤借車合作協(xié)議2篇
- 2024房地產(chǎn)銷售顧問合同范本
- 高中語文評價體系的構(gòu)建與實施
- 安徽省合肥市蜀山區(qū)2023-2024學(xué)年七年級上學(xué)期期末生物試卷
- 變電站消防培訓(xùn)課件
- TSM0500G(阻燃性) 豐田試驗測試標準
- 疊合板施工工藝及質(zhì)量控制要點
- 公共衛(wèi)生事業(yè)管理專業(yè)職業(yè)生涯規(guī)劃書
- 花藝師年度工作總結(jié)
- 新目標漢語口語課本2課件-第2單元
- 二手車買賣合同(標準版范本)
- 新產(chǎn)品的試制與導(dǎo)入
- 污水處理廠污泥處理處置投標方案
評論
0/150
提交評論